0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光刻成为摩尔定律的前沿 制造工艺成主要瓶颈

工程师邓生 来源:Ai芯天下 作者:Ai芯天下 2020-01-26 17:43 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

十多年来,半导体制造行业一方面一直在期待EUV能够拯救摩尔定律,但另一方面又担心该技术永远都不会出现。不过最终,它还是来了,而且不久便将投入使用。

摩尔定律渐远下的提升

半个多世纪以来,半导体行业按照摩尔定律不断发展,驱动了一系列的科技创新、社会改革以及生产效率的提高。

随着器件尺寸越来越逼近物理极限,摩尔定律对新一代工艺节点研发是否依然奏效是现在全行业都在关注的问题。

DRAM制程工艺进入20nm以后,由于制造难度越来越高,内存芯片制造厂商对工艺的定义已经不是具体的线宽。

目前,行业DRAM三巨头都没有大规模使用EUV,但随着制程工艺的提升,节点的进一步微缩,同时,EUV的性能和成本也在不断优化,DRAM将迎来EUV爆发期。

DRAM制造商采用EUV的可能性极有可能与逻辑芯片制造商相似。最初,EUV设备仅用于几层,随着制程节点、层数逐渐增加,将全面转向EUV设备。

光刻成为摩尔定律的前沿 制造工艺成主要瓶颈

被称为“突破摩尔定律的救星”

EUV 作为现在最先进的光刻机,是唯一能够生产 7nm 以下制程的设备,因为它发射的光线波长仅为现有设备的十五分之一,能够蚀刻更加精细的半导体电路,所以 EUV 也被成为“突破摩尔定律的救星”。

从2019年半导体芯片进入 7nm 时代开始(现在我们处于 10nm 时代),EUV 光刻机是绝对的战略性设备,没有它就会寸步难行。

而中芯国际斥巨资预定EUV设备,虽然技术落后三星、台积电两到三代,现在还在 28nm 和 14nm 上挣扎,但是拥有 EUV 光刻机之后,对于中国自主研发半导体技术是有着重大意义的。

光刻成为摩尔定律的前沿

在半导体产业中,由于不同种类芯片的晶体结构和工作模式存在差异,工艺发展进程也不尽相同。

在DRAM领域,全球三大DRAM原厂均停滞在18nm-15nm之间,仍没有突破10nm物理极限;在逻辑芯片制造领域,以台积电和三星为代表,已经引入EUV技术。

但在所有半导体产品制造中,都需要通过光刻技术将电路图形转移到单晶表面或介质层上,光刻技术的不断突破推动着集成电路密度、性能不断翻倍,成本也愈加优化。近年来,随着工艺节点的不断缩小,光刻技术主要经历了紫外光刻技术(UV)、深紫外光刻技术(DUV)和极紫外光刻技术(EUV)。

在EUV技术中,采用的光波长仅为13.5nm,因此能够将图案分辨率降低到10nm以下,这是目前主流的DUV技术无法达到的。

不过,因为晶片制程的持续推进,电路要再进行微缩的难度愈来愈高,成本的提升速度也愈来愈快。

EUV有足够的时间追赶

半导体厂商在步履艰难地减小线路尺寸的同时维持成本;每一代芯片成功流片的时间拉的更长;芯片工艺尺寸的减小也不像以往那样激进。这些困难可能会给 EUV 一个机会,摩尔定律的变缓可能真的会给EUV足够的时间迎头赶上。

足够的时间,也就是在摩尔定律被成本折磨到止步之前。EUV 可能会走到它被广泛接受而且能降低生产成本的那一天。到了那个时候,下一代的先进芯片的制造成本可能过高,而所带来的性能优势不够明显,以致于半导体厂商不会选择这种技术。

大厂对EUV的响应速度

EUV光刻机主要客户有英特尔、三星和台积电,而台积电的订单最多。存储方面DRAM的产量和工艺提升都需要用到EUV光刻机了, 而随着物联网的发展,相信也会给EUV设备带来增量。

光刻机领域的龙头老大是荷兰ASML,并已经占据了高达80%的市场份额,垄断了高端光刻机市场——最先进的EUV光刻机售价曾高达1亿美元一台,且全球仅仅ASML能够生产。

三星是第一个声称将使用EUV工具生产芯片的公司,并称将在2018年下半年投入使用。

英特尔发言人表示,一旦这项技术以有效的成本准备就绪,他们将致力于把EUV投入生产。研究指出,英特尔已经购买了比任何其他公司更多的EUV设备。

对于其7nm的EUV工艺,格罗方德将用5步取代15步。

台积电在7nm+ EUV节点之后,5nm工艺将更深入地应用EUV极紫外光刻技术,综合表现全面提升,官方宣称相比第一代7nm EDV工艺可以带来最多80%的晶体管密度提升,15%左右的性能提升或者30%左右的功耗降低。

中芯国际已经向荷兰芯片设备制造商 ASML 购买了一台 EUV 光刻设备,价值1.2亿美元。这也几乎花掉了中芯国际2017年的所有利润,该公司去年的净利润为1.264亿美元。不过在大家了解到 EUV 设备有多重要之后,就知道这笔钱花的有多值了。

ASML将引领EUV的进程

由于EUV的技术难度、需要的投资金额太高,另外两大微影设备厂──日本的尼康和佳能,都已放弃研发。

目前,这两家主要竞争对手均在规模与技术方面落后于公司,ASML以800亿美元市值建立起来的规模,已经将所有竞争对手(以及潜在竞争对手)远远地甩在了身后。

ASML成为了半导体业能继续冲刺下一代先进制程,开发出更省电、运算速度更快的电晶体的最后希望——如果ASML做不了,全球范围内已没有人可以做,摩尔定律会从此消亡。

制造工艺成主要的瓶颈

数字孔径越大,光刻波长越小,则光刻精度越好。因此在学术界如何提升光刻精度是很清楚的,即使用波长较短的光(如紫外线EUV等)以及增大数字孔径使用浸没式光刻等。

大家知道早晚得用EUV,但是出于成本和工艺成熟度考量大家总是希望越晚用EUV越好,能不用EUV就先撑几代再说。

因此就出现了double-pattern(用在16nm)甚至multi-pattern等办法实现在不使用EUV的情况下也能做到超低特征尺寸下的光刻,代价是工艺的复杂性大大上升。到了7nm终于是撑不住了,巨头纷纷开始宣布使用EUV。

当然之前的multi-pattern也不算是走了弯路,因为即使是用了EUV,在未来更小的特征尺寸下估计还是要上multi-pattern。与此同时,ASML在近日也公布了其路线图,并指出其1.5nm光刻技术将足够支持摩尔定律到2030年。

摩尔定律效应递减的国内机会

随着 ASML 将技术蓝图推展至 1.5 纳米,摩尔定律还有至少 10 年的时间。只是,过往半导体制程是每两年前进一个技术时代,未来可能是3—5年才前进一阶,整个产业的效益放缓是必然趋势,这也带给中国半导体大厂一个很好前进追赶的机会,奋力追上主流的工艺技术。

未来半导体世界的竞争,仍会是第一、第二、第三梯次壁垒分明。5 纳米以下技术可行,但技术难度和投资成本拉高,第一梯次包括台积电、三星、英特尔、 GlobalFoundries 已经申请参赛。

摩尔定律的效应趋缓下,代表前方的道路越来越难突破,这提供给中国半导体厂很好追赶的条件,只是技术持续提升的成本投资会大幅垫高,有机会挤入国际第一梯次队伍,这样的投资报酬率很迷人,更让中国芯片自主可控不再是遥不可及的梦想。

结尾:

摩尔定律的主要动力就是成本下降,而在一次性成本快速提升但平均成本却下降有限的时代,摩尔定律的进一步发展动力就不那么强了,EUV 可能会走到它被广泛接受而且能降低生产成本的那一天。
责任编辑:wv

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 摩尔定律
    +关注

    关注

    4

    文章

    640

    浏览量

    80622
  • 光刻
    +关注

    关注

    8

    文章

    356

    浏览量

    31154
  • EUV
    EUV
    +关注

    关注

    8

    文章

    614

    浏览量

    88535
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【「AI芯片:科技探索与AGI愿景」阅读体验】+半导体芯片产业的前沿技术

    为我们重点介绍了AI芯片在封装、工艺、材料等领域的技术创新。 一、摩尔定律 摩尔定律是计算机科学和电子工程领域的一条经验规律,指出集成电路上可容纳的晶体管数量每18-24个月会增加一倍,同时芯片大小也
    发表于 09-15 14:50

    【「AI芯片:科技探索与AGI愿景」阅读体验】+工艺创新将继续维持着摩尔神话

    。那该如何延续摩尔神话呢? 工艺创新将是其途径之一,芯片中的晶体管结构正沿着摩尔定律指出的方向一代代演进,本段加速半导体的微型化和进一步集成,以满足AI技术及高性能计算飞速发展的需求。 CMOS
    发表于 09-06 10:37

    Chiplet与3D封装技术:后摩尔时代的芯片革命与屹立芯创的良率保障

    摩尔定律逐渐放缓的背景下,Chiplet(小芯片)技术和3D封装成为半导体行业突破性能与集成度瓶颈的关键路径。然而,随着芯片集成度的提高,气泡缺陷成为影响封装良率的核心挑战之一。
    的头像 发表于 07-29 14:49 749次阅读
    Chiplet与3D封装技术:后<b class='flag-5'>摩尔</b>时代的芯片革命与屹立芯创的良率保障

    晶心科技:摩尔定律放缓,RISC-V在高性能计算的重要性突显

    运算还是快速高频处理计算数据,或是超级电脑,只要设计或计算系统符合三项之一即可称之为HPC。 摩尔定律走过数十年,从1970年代开始,世界领导厂商建立晶圆厂、提供制程工艺,在28nm之前取得非常大的成功。然而28nm之后摩尔定律
    的头像 发表于 07-18 11:13 4027次阅读
    晶心科技:<b class='flag-5'>摩尔定律</b>放缓,RISC-V在高性能计算的重要性突显

    跨越摩尔定律,新思科技掩膜方案凭何改写3nm以下芯片游戏规则

    。 然而,随着摩尔定律逼近物理极限,传统掩模设计方法面临巨大挑战,以2nm制程为例,掩膜版上的每个图形特征尺寸仅为头发丝直径的五万分之一,任何微小误差都可能导致芯片失效。对此,新思科技(Synopsys)推出制造解决方案,尤其是
    的头像 发表于 05-16 09:36 5461次阅读
    跨越<b class='flag-5'>摩尔定律</b>,新思科技掩膜方案凭何改写3nm以下芯片游戏规则

    电力电子中的“摩尔定律”(1)

    本文是第二届电力电子科普征文大赛的获奖作品,来自上海科技大学刘赜源的投稿。著名的摩尔定律中指出,集成电路每过一定时间就会性能翻倍,成本减半。那么电力电子当中是否也存在着摩尔定律呢?1965年,英特尔
    的头像 发表于 05-10 08:32 685次阅读
    电力电子中的“<b class='flag-5'>摩尔定律</b>”(1)

    最全最详尽的半导体制造技术资料,涵盖晶圆工艺到后端封测

    ——薄膜制作(Layer)、图形光刻(Pattern)、刻蚀和掺杂,再到测试封装,一目了然。 全书共分20章,根据应用于半导体制造主要技术分类来安排章节,包括与半导体制造相关的基础技
    发表于 04-15 13:52

    光刻工艺主要流程和关键指标

    光刻工艺贯穿整个芯片制造流程的多次重复转印环节,对于集成电路的微缩化和高性能起着决定性作用。随着半导体制造工艺演进,对光刻分辨率、套准精度和
    的头像 发表于 03-27 09:21 3053次阅读
    <b class='flag-5'>光刻工艺</b>的<b class='flag-5'>主要</b>流程和关键指标

    瑞沃微先进封装:突破摩尔定律枷锁,助力半导体新飞跃

    在半导体行业的发展历程中,技术创新始终是推动行业前进的核心动力。深圳瑞沃微半导体凭借其先进封装技术,用强大的实力和创新理念,立志将半导体行业迈向新的高度。 回溯半导体行业的发展轨迹,摩尔定律无疑是一个重要的里程碑
    的头像 发表于 03-17 11:33 717次阅读
    瑞沃微先进封装:突破<b class='flag-5'>摩尔定律</b>枷锁,助力半导体新飞跃

    纳米压印技术:开创下一代光刻的新篇章

    光刻技术对芯片制造至关重要,但传统紫外光刻受衍射限制,摩尔定律面临挑战。为突破瓶颈,下一代光刻
    的头像 发表于 02-13 10:03 3358次阅读
    纳米压印技术:开创下一代<b class='flag-5'>光刻</b>的新篇章

    混合键合中的铜连接:或摩尔定律救星

    混合键合3D芯片技术将拯救摩尔定律。 为了继续缩小电路尺寸,芯片制造商正在争夺每一纳米的空间。但在未来5年里,一项涉及几百乃至几千纳米的更大尺度的技术可能同样重要。 这项技术被称为“混合键合”,可以
    的头像 发表于 02-09 09:21 1131次阅读
    混合键合中的铜连接:或<b class='flag-5'>成</b><b class='flag-5'>摩尔定律</b>救星

    石墨烯互连技术:延续摩尔定律的新希望

    半导体行业长期秉持的摩尔定律(该定律规定芯片上的晶体管密度大约每两年应翻一番)越来越难以维持。缩小晶体管及其间互连的能力正遭遇一些基本的物理限制。特别是,当铜互连按比例缩小时,其电阻率急剧上升,这会
    的头像 发表于 01-09 11:34 877次阅读

    摩尔定律是什么 影响了我们哪些方面

    摩尔定律是由英特尔公司创始人戈登·摩尔提出的,它揭示了集成电路上可容纳的晶体管数量大约每18-24个月增加一倍的趋势。该定律不仅推动了计算机硬件的快速发展,也对多个领域产生了深远影响。
    的头像 发表于 01-07 18:31 2932次阅读

    【「大话芯片制造」阅读体验】+ 芯片制造过程和生产工艺

    盖楼一样,层层堆叠。 总结一下,芯片制造主要过程包括晶圆加工、氧化、光刻、刻蚀、薄膜沉积、互连、测试和封装。 晶圆,作为单晶柱体切割而成的圆薄片,其制作原料是硅或砷化镓。高纯度的硅材料提取自硅砂
    发表于 12-30 18:15

    【「大话芯片制造」阅读体验】+芯片制造过程工艺面面观

    第二章对芯片制造过程有详细介绍,通过这张能对芯片制造过程有个全面的了解 首先分为前道工序和后道工序 前道工序也称扩散工艺,占80%工作量,进一步分为基板工艺和布线
    发表于 12-16 23:35