0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

3D异构集成重塑芯片格局

颖脉Imgtec 2024-11-22 01:08 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文由半导体产业纵横(ID:ICVIEWS)综合


AI的激增推动了对先进半导体芯片的需求,推动了芯片设计和制造的界限。AI 的快速发展迎来了半导体比以往任何时候都更加重要的时代。从训练到部署,每个 AI 模型和应用程序的背后都隐藏着一个复杂的半导体网络,这些网络使处理大量数据所需的处理能力成为可能。AI 的激增推动了对先进半导体芯片的需求,推动了芯片设计和制造的界限。为了满足这些需求,半导体行业越来越多地转向 3D 异构集成等创新解决方案。


打破冯·诺依曼瓶颈

传统上,半导体行业遵循摩尔定律,该定律预测微芯片上的晶体管数量大约每两年翻一番。几十年来,这种对提高计算能力的不懈追求推动了晶体管的小型化。

然而,随着我们接近缩小晶体管的物理极限,该行业面临着新的挑战,尤其是在优化芯片架构以管理生成式 AI 不断增长的数据需求方面。现代芯片设计中最重要的挑战之一是“内存墙”或“冯·诺依曼瓶颈”,即数据在芯片内的内存和逻辑单元之间传输的速度受到限制。随着 AI 模型复杂性的增加和数据集的扩展,这种瓶颈变得更加明显,导致数据移动效率低下,从而阻碍整体性能。

为了克服这一瓶颈,半导体行业采用了 3D 异构集成,该技术涉及垂直堆叠内存和逻辑单元,而不是并排放置。这种垂直集成缩短了数据路径,提高了能源效率,并允许更高的互连密度——这是实现 AI 应用所需的高带宽的关键因素。通过采用这种方法,该行业可以绕过一些传统上限制芯片性能的物理限制。


摩尔定律规范着该行业

如图 1 所示,上述趋势不仅可以从经验上观察到,还可以从数量上反映出来。

336b5b46-a82b-11ef-8084-92fbcf53809c.png

图 1:摩尔定律支配着整个行业。紫色:增加互联密度以保持带宽。蓝色:晶体管数量增加,以提高逻辑能力。(数据和预测来自台积电)

每个处理器的晶体管数量每 2.3 年翻一番,符合经典的摩尔定律。有趣的是,另一个几乎以相同速度增长的指标:互连密度。摩尔定律可以追溯到 20 世纪 70 年代,而后者则是芯片带宽需求不断增长所带来的最新趋势——这也是人工智能面临的最严峻挑战之一。

尽管两者是不同的衡量标准,但当芯片性能进一步提高时,两者不可避免地会相互联系。要想取得成功,必须在这两个阶段(即前端和后端,因为尖端技术的进步依赖于其中任何一个阶段)都有所作为。

随着芯片向 3D 架构发展,这些互连线的密度变得与晶体管数量同等重要。更高的互连密度可以加快数据传输,这对人工智能加速器和系统级封装(SiP)解决方案至关重要。然而,要在不影响能效的前提下增加互连数量,就必须采用先进的材料和精密制造技术——在这些领域,计量学发挥着举足轻重的作用。

在晶圆厂内,一个晶圆需要经过数月的数百个步骤才能转化为高端芯片,而每个步骤都需要原子级的制造精度。瑕疵并非不存在。因此,良品率是衡量晶圆缺陷数量和程度的重要标准。高端芯片几乎不能容忍任何缺陷,而同样结构的芯片,如果缺陷率增加,则可能用于较低等级的应用。

显然,制造商的目标是最大限度地提高产量,因为在最终质量检查(也称为计量)确定芯片能力之前,运营成本已经累积。


计量在人工智能芯片制造中的关键作用

随着半导体芯片变得越来越复杂,计量学的作用也变得越来越关键。计量学涉及芯片特征的精确测量和检测,对于确保先进半导体器件的质量和功能至关重要。在三维异质集成的背景下尤其如此,传统的二维测量技术已不再足够。

新的计量工具旨在以纳米级精度高速测量复杂的三维结构。这些工具对于检测缺陷、监控关键尺寸和验证半导体器件所用材料的完整性至关重要。例如,在生产人工智能应用不可或缺的 HBM 单元时,多个 DRAM 单元的垂直整合需要原子级的精度。必须在每个芯片上钻出通道,以最高精度连接各层,因此计量是制造过程中的关键步骤。


人工智能创新的关键技术集成

半导体公司正在不断发展计量和检测仪器技术,这些技术对于确保半导体芯片的质量和产量至关重要,尤其是在三维异质集成等先进工艺中。

鉴于行业正向更复杂的芯片架构转变,计量工具显得尤为重要。随着芯片的垂直集成度越来越高,计量工具的精度和速度对于识别和纠正缺陷变得越来越重要,否则可能会影响整个芯片的性能。


人工智能芯片制造的未来

随着对人工智能和其他先进计算技术的需求不断增长,对能够提供更高性能、更高效率和前所未有的集成度的半导体芯片的需求也在不断增长。三维异构集成与先进计量技术的结合为满足这些需求提供了一条途径,使芯片的生产速度更快、体积更小、能效更高。

在这方面,Unity-SC 的三维光学计量解决方案在互连检测和大批量制造计量方面的专业知识,从而支持以高速大批量提高产量。

随着芯片架构变得越来越复杂,功能越来越小,互连越来越错综复杂,精确的测量和检测对于确保质量和功能至关重要。这些能力对于保持高产量和实现人工智能、AR/VR 等先进技术的性能要求至关重要。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 3D
    3D
    +关注

    关注

    9

    文章

    2993

    浏览量

    113853
  • AI
    AI
    +关注

    关注

    89

    文章

    38170

    浏览量

    296866
  • 半导体芯片
    +关注

    关注

    61

    文章

    941

    浏览量

    72325
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    3D打印又火了!全球最大工厂将落地深圳

    后将成为全球规模最大的3D打印生产基地。目前,近5000台各型号设备已陆续抵达并展开部署。   拓竹科技(Bambu Lab)总部位于深圳,自2020年成立以来,便凭借颠覆性技术重塑了消费级3D打印
    的头像 发表于 11-30 07:34 9415次阅读
    <b class='flag-5'>3D</b>打印又火了!全球最大工厂将落地深圳

    西门子EDA重塑3D IC设计:突破高效协同、可靠验证、散热及应力管理多重门

    上进行堆叠,极大地提高了芯片集成度和性能,成为未来集成电路产业的重要发展方向。然而,3D IC在设计过程中也面临着诸多技术挑战。 高效协同平台,
    的头像 发表于 10-23 14:32 5763次阅读
    西门子EDA<b class='flag-5'>重塑</b><b class='flag-5'>3D</b> IC设计:突破高效协同、可靠验证、散热及应力管理多重门

    3D封装架构的分类和定义

    3D封装架构主要分为芯片芯片集成、封装对封装集成异构集成
    的头像 发表于 10-16 16:23 1353次阅读
    <b class='flag-5'>3D</b>封装架构的分类和定义

    【海翔科技】玻璃晶圆 TTV 厚度对 3D 集成封装可靠性的影响评估

    一、引言 随着半导体技术向小型化、高性能化发展,3D 集成封装技术凭借其能有效提高芯片集成度、缩短信号传输距离等优势,成为行业发展的重要方向 。玻璃晶圆因其良好的光学透明性、化学稳定
    的头像 发表于 10-14 15:24 257次阅读
    【海翔科技】玻璃晶圆 TTV 厚度对 <b class='flag-5'>3D</b> <b class='flag-5'>集成</b>封装可靠性的影响评估

    iTOF技术,多样化的3D视觉应用

    视觉传感器对于机器信息获取至关重要,正在从二维(2D)发展到三维(3D),在某些方面模仿并超越人类的视觉能力,从而推动创新应用。3D 视觉解决方案大致分为立体视觉、结构光和飞行时间 (TOF) 技术
    发表于 09-05 07:24

    华大九天推出芯粒(Chiplet)与2.5D/3D先进封装版图设计解决方案Empyrean Storm

    随着“后摩尔时代”的到来,芯粒(Chiplet)与 2.5D/3D 先进封装技术正成为突破晶体管微缩瓶颈的关键路径。通过异构集成将不同的芯片
    的头像 发表于 08-07 15:42 3841次阅读
    华大九天推出芯粒(Chiplet)与2.5<b class='flag-5'>D</b>/<b class='flag-5'>3D</b>先进封装版图设计解决方案Empyrean Storm

    从微米到纳米,铜-铜混合键合重塑3D封装技术格局

    电子发烧友网综合报道 半导体封装技术正经历从传统平面架构向三维立体集成的革命性跃迁,其中铜 - 铜混合键合技术以其在互连密度、能效优化与异构集成方面的突破,成为推动 3D 封装发展的核
    发表于 06-29 22:05 1440次阅读

    多芯粒2.5D/3D集成技术研究现状

    面向高性能计算机、人工智能、无人系统对电子芯片高性能、高集成度的需求,以 2.5D3D 集成技术为代表的先进封装
    的头像 发表于 06-16 15:58 1275次阅读
    多芯粒2.5<b class='flag-5'>D</b>/<b class='flag-5'>3D</b><b class='flag-5'>集成</b>技术研究现状

    3D AD库文件

    3D库文件
    发表于 05-28 13:57 6次下载

    从焊锡膏到3D堆叠:材料创新如何重塑芯片性能规则?

    在摩尔定律逼近物理极限的当下,先进封装技术正成为半导体行业突破性能瓶颈的关键路径。以系统级封装(SiP)、晶圆级封装(WLP)、3D堆叠、Chiplet异构集成为代表的颠覆性方案,正重新定义
    的头像 发表于 04-10 14:36 1078次阅读
    从焊锡膏到<b class='flag-5'>3D</b>堆叠:材料创新如何<b class='flag-5'>重塑</b><b class='flag-5'>芯片</b>性能规则?

    3D封装与系统级封装的背景体系解析介绍

    的核心技术,正在重塑电子系统的集成范式。3D封装通过垂直堆叠实现超高的空间利用率,而SiP则专注于多功能异质集成,两者共同推动着高性能计算、人工智能和物联网等领域的技术革新。 根据Mo
    的头像 发表于 03-22 09:42 1625次阅读
    <b class='flag-5'>3D</b>封装与系统级封装的背景体系解析介绍

    3D IC背后的驱动因素有哪些?

    3D芯片设计背后的驱动因素以及3D封装的关键芯片芯片和接口IP要求。3D
    的头像 发表于 03-04 14:34 905次阅读
    <b class='flag-5'>3D</b> IC背后的驱动因素有哪些?

    DAD1000驱动芯片3D功能吗?

    DAD1000驱动芯片3D功能吗
    发表于 02-21 13:59

    2.5D3D封装技术介绍

    整合更多功能和提高性能是推动先进封装技术的驱动,如2.5D3D封装。 2.5D/3D封装允许IC垂直集成。传统的flip-chip要求每个
    的头像 发表于 01-14 10:41 2640次阅读
    2.5<b class='flag-5'>D</b>和<b class='flag-5'>3D</b>封装技术介绍

    人工智能应用中的异构集成技术

    型的芯片(chiplet)组合到统一封装中,提供更好的性能、更低的互连延迟和更高的能源效率,这些对于数据密集型人工智能工作负载都非常重要[1]。 现有异构集成技术 图1展示了异构
    的头像 发表于 12-10 10:21 1594次阅读
    人工智能应用中的<b class='flag-5'>异构</b><b class='flag-5'>集成</b>技术