0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

砷化镓基板对外延磊晶质量的影响

微云疏影 来源:光电子技术和芯片知识 作者:光电子技术和芯片 2022-04-07 15:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

最近做芯片和外延的研究,发现同样的外延工艺和芯片工艺做出来的芯片性能差别很大,大到改变试验设计的“世界观”。基板衬底的质量好坏很关键。

今天专门扒一扒砷化镓GaAs系外延基板的问题,以及砷化镓外延。砷化镓目前体量最大的,主要用于通信领域(5G手机PA通信射频芯片),全球近百亿美金市场。磷化铟主要用于通讯领域的光电器材(如光模块里的发射芯片)。

在光电子激光、LED领域砷化镓也占据很大的分量。作为成熟的第二代化合物半导体,砷化镓功率芯片以及光电子芯片均是在砷化镓基板上通过外延生长的手段长出不同的材料膜层结构。工业常用MOCVD的技术,通过化合物热分解反应沉积到砷化镓基板上表面。

MOCVD(金属氧化物化学气相沉积)是在气相外延生长(VPE)的基础上发展起来的一种新型气相外延生长技术。它以Ⅲ族、Ⅱ族元素的有机化合物和V、Ⅵ族元素的氢化物等作为晶体生长源材料,以热分解反应方式在衬底上进行气相外延,生长各种Ⅲ-V族、Ⅱ-Ⅵ族化合物半导体以及它们的多元固溶体的薄层单晶材料。

poYBAGJOk6yAB-JPAAK-_xJhRHg614.jpg

pYYBAGJOk6yACFvsAAKY2gdeZsA926.jpg

我们看到外延就是在基板上从无到有一层一层长起来的,因此基板衬底的选择和工艺处理十分重要。因为真正的器件有效工作层,厚度可能也就几个微米到几十微米。

衬底既是器件的支撑,也是外延层的生长籽晶,它对光电子器件的性能影响很大,选择衬底我们需要有几个基本的要求:

1)衬底晶面取向;

2)表面腐蚀坑密度;

3)杂质类型和密度‘

4)衬底厚度和尺寸大小。

例如一个硅掺杂的N型砷化镓基板:

Si-Dopant GaAs Wafer

Diameter : 100.5±0.5mm(4”)

Thinkness :625±25um(4”)

Orientation:(100)tilt10?toward(111)A±0.5?

EPD:《1000cm-?

Concentration:》1E20CM-?

Growthmethod: VGF

Flatoption: EJ

Major flatlength:30±2mm(4”)

Minor flatlength:15±2mm(4”)

LaserMark:Back side major flat.

GaAS和InP是常用的两种衬底,通常选用(100)面作为外延生长面,有时偏离该晶面±0.1°或者±0.5°,在激光芯片制程中,这样的(011)面是解离面,就可以用作腔面了。

如何检查衬底晶面的缺陷?

poYBAGJOk6yASLYIAAAq5kiSA64445.jpg

常用方法:GaAs材料用HF:CrO3+H2O=2:1用作腐蚀液。CrO3先溶于水中(重量比33%)。InP用HCl:H2O=4:1.出现上图的腐蚀坑,然后在高倍显微镜下观察并计数,对于GaAs小于2000/cm2,InP小于50000/cm2外延质量较好。

同时在外延前常进行先腐蚀或者“回熔”,因此衬底厚度也会变化,通常外延衬底选用350~400um的厚度。

液相外延生长前的主要工艺步骤是按照固溶体的组分要对所用材料称重,并进行清洗和腐蚀,然后将它们分别放入各个熔池进行生长。

举例砷化镓体系,在GaAs衬底上生长GaAlAs外延层:

理论上可以按照下列方程式确定每一克Ga溶液中GaAs的平衡重量x,Al的重量y。

pYYBAGJOk62ABcq7AAAarMd_5ag764.jpg

下面以GaAlAs/GaAs DH激光器为例,给出液相外延生产各层的参数和每一种材料的清洗、腐蚀工艺参数:

poYBAGJOk62AFrdbAACHEh5aBIk619.jpg

pYYBAGJOk62AfsUyAABap-a8afE375.jpg

poYBAGJOk6-AUNHoAAcVbi589Y0390.jpg

详细了解一下MOCVD沉积GaAs外延层的过程。

MOCVD生长GaAs最早使用的源材料是TMGa和AsH3.后面也用到其他组合很多。其典型的生长条件如下:

AsH3流量 (7~9)*10*-4mol/min

TMGa流量 10*-5mol/min

生长温度为 600~700摄氏度

V/III比为 30~45

H2总流量 21~31

生长的基本工艺过程为:

1;把处理好的衬底装入基托后,调整与TMGa源相关的设定,如流量、温度等。

2:然后系统抽真空,通H2并调整好反应室内的压力。

3. 接着温度升到300℃时,通AsH3,在反应室内形成As气氛,以防止GaAs分解。

4. 待温度升到外延生长温度后,通入TMGa晶向生长。

5.生长完毕后,先停止通TMGa,降温到300℃,再停止通AsH3.

6 待降到室温后,开炉取出片子。

砷化镓产业链分布

pYYBAGJOk6-AAB3dAAQXx1XWbNA655.jpg

化合物半导体产业类似与传统硅基半导体,但又有着自己独特的地方。砷化镓同样有芯片设计、代工、封装、测试环节。多的是外延片的生长磊晶阶段。

行业的上游是砷化镓基板和EPI晶圆。基板就是砷化镓晶圆最基础的材料(GaAs衬底),生产商主要有日本住友电工(Sumitomo);德国弗莱贝格(Freiberger) 美国AXT

poYBAGJOk7CAKLECAAIxaNg1UeA009.jpg

生产完成后,要送到EPI晶圆厂(GaAs外延),由英国的IQE,台湾全新光电VPEC,日本住友等龙头厂商在砷化镓晶圆表面沉淀增加不同的材料层。中游体量目前大部分被美国的三大IDM厂商,Skyworks, Qorvo和Broadcom(Avago)占据,整个GaAs全球体量2019年是85.44亿美金;另外一条路线就是走设计和代工分离。

之前因为第二三代半导体体量较小,产品多样化,所以走IDM路线,可以将设计和制造紧密衔接。不过随着第二三代半导体更加规模化放量,更多的生产任务外包给代工厂成为一种趋势在代工厂中,主要以台系的稳懋(WIN),环宇(GCS),宏捷(AWSC)为主。

2019年,GaAs器件代工的规模是8.81亿美金。Avago和Skyworks除芯片设计业务外,也有自己的工厂,当自身产能不足时,会将部分订单交给中国台湾代工厂,Avago的代工厂商是稳懋,Skyworks的代工厂商是宏捷科技,Qorvo的产能充足,主要自产,而且还会向外提供代工服务。

因为宏捷的技术是Skyworks授权的,因此当Skyworks将订单拿回内部消化的时候,宏捷的收入大幅下降,急需转型,不过目前转型成功。而环宇这个千年老三是自主技术,增长比较稳健,2016年三安光电想要收购环宇,不过没有通过美国的审批,最后退而求其次成立合资公司(三安环宇),将4G手机PA的HBT技术授权给三安生产(不包含5G技术),不过该合资公司已经于2019年底被注销。三安光电现在和华为合作生产华为自研的5G的射频PA芯片还有氮化镓的5G基站射频芯片。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • led
    led
    +关注

    关注

    243

    文章

    24438

    浏览量

    687490
  • 芯片
    +关注

    关注

    462

    文章

    53542

    浏览量

    459202
  • 砷化镓
    +关注

    关注

    4

    文章

    178

    浏览量

    20166
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AM010WX-BI-R高电子迁移率晶体管现货库存

    AM010WX-BI-R是AMCOM品牌的一款高电子迁移率晶体管(GaAs pHEMT),选用陶瓷 BI 封装,频率范围高达 12 GHz,适用于的L / S / C波段宽带功率
    发表于 08-25 10:06

    圆清洗后表面外延颗粒要求

    圆清洗后表面外延颗粒的要求是半导体制造中的关键质量控制指标,直接影响后续工艺(如外延生长、光刻、金属等)的良率和器件性能。以下是不同维度
    的头像 发表于 07-22 16:54 1325次阅读
    <b class='flag-5'>晶</b>圆清洗后表面<b class='flag-5'>外延</b>颗粒要求

    HMC347A-Die单刀双掷(SPDT)

    HMC347A-Die单刀双掷(SPDT)HMC347A-Die 是ADI生产制造的一款宽带、非反射式、(GaAs)假高电子迁移率晶体管(pHEMT)单刀双掷(SPDT)单片微
    发表于 06-20 09:49

    一文详解外延生长技术

    随着半导体器件特征尺寸不断微缩,对高质量薄膜材料的需求愈发迫切。外延技术作为一种在半导体工艺制造中常用的单晶薄膜生长方法,能够在单晶衬底上按衬底向生长新的单晶薄膜,为提升器件性能发挥了关键作用。本文将
    的头像 发表于 06-16 11:44 2277次阅读
    一文详解<b class='flag-5'>外延</b>生长技术

    国内氮化大厂被申请破产:曾规划投资50亿,年产36万片

    半导体的破产重整。   聚力成半导体早期由重庆捷舜科技有限公司投资设立,并于2018年9月与重庆大足区政府签约,启动外延片和芯片产线项目,主要业务是硅基氮化/碳化硅基氮化外延片、功
    的头像 发表于 05-22 01:07 3453次阅读
    国内氮化<b class='flag-5'>镓</b>大厂被申请破产:曾规划投资50亿,年产36万片<b class='flag-5'>晶</b>圆

    圆衬底上生长外延层的必要性

    本文从多个角度分析了在圆衬底上生长外延层的必要性。
    的头像 发表于 04-17 10:06 739次阅读

    合:从GaN材料到器件研发,打造三大应用竞争力

    氮化的应用已经从消费电子的快充向工业级功率领域渗透,这给了国内厂商非常大的市场机会。在2025CITE电子展上,合董事长助理赵阳接受媒体采访,分享公司氮化产品和市场近况以及行
    的头像 发表于 04-16 15:12 1364次阅读

    CHA5659-98F/CHA5659-QXG:毫米波通信领域的高功率放大器

    CHA5659-98F/CHA5659-QXG是法国UMS公司推出的四级单片(GaAs)高功率放大器,专为36-43.5GHz毫米波频段设计。该器件采用先进的0.15μm pHEMT工艺制造,在K波段卫星通信和点对点无线电
    的头像 发表于 03-07 16:24 1031次阅读
    CHA5659-98F/CHA5659-QXG:毫米波通信领域的<b class='flag-5'>砷</b><b class='flag-5'>化</b><b class='flag-5'>镓</b>高功率放大器

    SiC外延片的化学机械清洗方法

    外延片的质量和性能。因此,采用高效的化学机械清洗方法,以彻底去除SiC外延片表面的污染物,成为保证外延质量的关键步骤。本文将详细介绍SiC
    的头像 发表于 02-11 14:39 414次阅读
    SiC<b class='flag-5'>外延</b>片的化学机械清洗方法

    应力消除外延生长装置及外延生长方法

    影响外延质量和性能的关键因素。为了克服这一问题,应力消除外延生长装置及外延生长方法应运而生。本文将详细介绍这种装置和方法的工作原理、技术特点以及应用前景。 应力
    的头像 发表于 02-08 09:45 268次阅读
    应力消除<b class='flag-5'>外延</b>生长装置及<b class='flag-5'>外延</b>生长方法

    InGaAs量子井面射型雷射介绍

    由上述 InP 系列材料面射型雷射发展可以发现,要制作全结构的长波长面射型雷射难度较高,因此在1990年中期开始许多光通讯大厂及研究机构均投入大量资源开发与
    的头像 发表于 02-07 11:08 940次阅读

    提高SiC外延生长速率和品质的方法

    SiC外延设备的复杂性主要体现在反应室设计、加热系统和旋转系统等关键部件的精确控制上。在SiC外延生长过程中,型夹杂和缺陷问题频发,严重影响外延膜的
    的头像 发表于 02-06 10:10 1213次阅读

    用于半导体外延片生长的CVD石墨托盘结构

    衬底的关键组件,其结构和性能对外延片的质量具有决定性影响。本文将详细介绍一种用于半导体外延片生长的CVD石墨托盘结构,探讨其设计特点、工作原理及在半导体制造中的应
    的头像 发表于 01-08 15:49 364次阅读
    用于半导体<b class='flag-5'>外延</b>片生长的CVD石墨托盘结构

    8英寸单片高温碳化硅外延生长室结构

    随着碳化硅(SiC)材料在电力电子、航空航天、新能源汽车等领域的广泛应用,高质量、大面积的SiC外延生长技术变得尤为重要。8英寸SiC圆作为当前及未来一段时间内的主流尺寸,其外延生长
    的头像 发表于 12-31 15:04 398次阅读
    8英寸单片高温碳化硅<b class='flag-5'>外延</b>生长室结构

    Techwiz LCD:基板未对准分析

    当在制造LCD设备的过程中TFT基板 和公共电极基板未对准时,LCD设备的显示质量会受到不利影响。可使用Techwiz LCD 3D来进行基板未对准时的光绪分析。
    发表于 12-23 19:37