电子发烧友App

硬声App

0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电子发烧友网>今日头条>锗对氮化硅中红外集成光子学的波导

锗对氮化硅中红外集成光子学的波导

收藏

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉

评论

查看更多

相关推荐

光子集成芯片的基础知识

光子集成芯片是一种利用光波作为信息传输或数据运算载体的集成电路。它依托于集成光学或硅基光电子学中的介质光波导来传输导模光信号,将光信号和电信号的调制、传输、解调等功能集成在一起。
2024-03-22 17:29:3363

光电集成芯片和光子集成芯片的区别

光电集成芯片和光子集成芯片在多个方面存在显著的区别。
2024-03-22 16:56:3855

光子集成芯片的工作原理和应用

光子集成芯片(Photonic Integrated Circuit,简称PIC)是一种将光子学和电子学功能集成在同一芯片上的技术。这种芯片利用光子(光的粒子)来传输、感知、处理和传送信息,与传统的基于电子信号的集成电路相比,光电集成芯片在某些应用中展现出独特的优势。
2024-03-22 16:55:1565

光子集成芯片是什么

光子集成芯片,也称为光子芯片或光子集成电路,是一种将光子器件小型化并集成在特殊衬底材料上的技术。这些特殊的光子器件,如光栅、耦合器、光开关、激光器、光电探测器、阵列波导等,被组合在一起以完成特定的功能。光子集成芯片的核心是光波导,它利用光的全反射现象将光线引导在芯片内部传输。
2024-03-22 16:51:1460

光子集成芯片的应用范围

光子集成芯片的应用范围非常广泛,得益于其在高速数据传输、低功耗通信以及高度集成等方面的显著优势。
2024-03-20 17:05:35128

光子集成芯片的应用前景

光子集成芯片,作为光电集成领域的重要分支,近年来受到了广泛关注。其应用范围广泛,涉及通信、计算、传感等多个领域,展现出了巨大的应用前景。
2024-03-20 16:27:49114

光子集成芯片的应用领域

光子集成芯片的应用领域相当广泛,其基于光子学的特性使得它在多个领域都能发挥重要作用。
2024-03-20 16:24:52123

微波光子集成芯片和硅基光子集成芯片的区别

微波光子集成芯片和硅基光子集成芯片都是光电子领域的重要技术,但它们在设计原理、应用领域以及制造工艺上存在着显著的区别。
2024-03-20 16:14:06103

简单认识微波光子集成芯片和硅基光子集成芯片

微波光子集成芯片是一种新型的集成光电子器件,它将微波信号和光信号在同一芯片上进行处理和传输。这种芯片的基本原理是利用光子器件和微波器件的相互作用来实现信号的传输和处理。光子器件通常由光源、光调制器
2024-03-20 16:11:22108

光子集成芯片基础知识

光子集成芯片,一种新型的光电子器件,将光子器件与集成电路技术相结合,实现了光信号与电信号的集成处理。它以其独特的工作原理和广泛的应用领域,成为当前科技研究的热点。
2024-03-20 16:10:1195

光是如何在光子集成电路中传播的?

(a)光子器件内传播波成像实验装置的示意图。1550 nm信号脉冲(橙色)通过光栅耦合到绝缘体上硅(SOI)波导中,而780 nm泵浦脉冲(红色)使用长工作距离物镜聚焦到器件上。当两个脉冲在时间
2024-02-29 06:29:02143

Intel 硅光子

Intel 硅光子Intel®硅光子将硅集成电路和半导体激光两个重要发明结合在一起。与传统电子产品相比,它可以实现更远距离的数据传输。它利用了Intel®大批量硅制造的效率。特性为数据中心及其他领域
2024-02-27 12:19:00

多模微环谐振器中的多功能光子分子开关研究

近日,北京大学电子学院王兴军、舒浩文团队提出集成微波光子宽频段精细信号处理解决方案,通过操控波导内空间模式的耦合关系来调控谐振峰劈裂的状态;
2024-02-26 09:28:52267

光子集成电路驱动下的便携式OCT技术

光子和电子集成电路的集成简化了组装过程并降低了生产成本,使OCT系统更容易为更广泛的医疗机构和患者所使用。
2024-02-25 11:09:39249

一个基于薄膜铌酸锂的集成光子平台开发

研究人员正在利用光子学来开发和扩展硬件,以满足量子信息技术的严格要求。通过利用光子学的特性,研究人员指出了缩放量子硬件的好处。
2024-01-25 09:14:14272

半导体资料丨铌酸锂光子集成电路、碳化硅光子应用、ACL蚀刻

mA/mm的ID,最大值和27Ω·mm的RON,创下了金属有机化学气相沉积(MOCVD)生长的III族氮化物p-FET的记录。 高密度铌酸锂光子集成电路 在这里,我们证明了类金刚石碳(DLC)是制造基于铁电体的光子集成电路的优越材料,特别是LiNbO3。使用DLC作为硬掩模,我们展示了深蚀刻、紧密
2024-01-16 17:12:33146

如何增强MOS管的带载能力呢?

对其带载能力有很大影响,常用的MOS管材料有硅、碳化硅氮化硅等。不同材料具有不同的特性,硅材料具有高电子迁移率和较低的电阻,适用于高频应用;碳化硅具有高电子饱和速度和高电压传导能力,适用于高功率应用;氮化硅具有高温特性和较高的能带间隙,适
2024-01-12 14:43:47424

硅基氮化集成电路芯片有哪些

硅基氮化镓(SiGaN)集成电路芯片是一种新型的半导体材料,具有广阔的应用前景。它将硅基材料与氮化镓材料结合在一起,利用其优势来加速集成电路发展的速度。本文将介绍硅基氮化集成电路芯片的背景、特点
2024-01-10 10:14:58226

氮化镓的发展难题及技术突破盘点

同为第三代半导体材料,氮化镓时常被人用来与碳化硅作比较,虽然没有碳化硅发展的时间久,但氮化镓依旧凭借着禁带宽度大、击穿电压高、热导率大、饱和电子漂移速度高和抗辐射能力强等特点展现了它的优越性。
2024-01-10 09:53:29567

氮化镓功率器件结构和原理

晶体管)结构。GaN HEMT由以下主要部分组成: 衬底:氮化镓功率器件的衬底采用高热导率的材料,如氮化硅(Si3N4),以提高器件的热扩散率和散热能力。 二维电子气层:氮化镓衬底上生长一层氮化镓,形成二维电子气层。GaN材料的禁带宽度大,由于
2024-01-09 18:06:41667

新型集成波导滤波器的设计

摘要:本文介绍了LTCC(低温共烧陶瓷)技术中广泛采用的IWG(集成波导[1])滤波器。设计了通带为35-36GHz的七级契比雪夫型IWG滤波器,它在34-37GHz外可以提供50dB的衰减
2024-01-02 14:01:23439

首款同时集成激光器和光子波导的芯片

3D集成硅PIC芯片 来自美国加州大学圣巴巴拉分校与加州理工学院的科研团队合作开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。相关论文已发表于近日出版的《自然
2024-01-02 06:38:14184

氮化镓半导体和碳化硅半导体的区别

氮化镓半导体和碳化硅半导体是两种主要的宽禁带半导体材料,在诸多方面都有明显的区别。本文将详尽、详实、细致地比较这两种材料的物理特性、制备方法、电学性能以及应用领域等方面的差异。 一、物理特性: 氮化
2023-12-27 14:54:18326

光子温度传感器:从光子集成芯片到完整封装微型探针

与电子元器件类似,光子电路也可以微型化到芯片上,形成所谓的光子集成电路(PIC)。
2023-12-25 10:26:49462

氮化硅为什么能够在芯片中扮演重要的地位?

在芯片制造中,有一种材料扮演着至关重要的角色,那就是氮化硅(SiNx)。
2023-12-20 18:16:09511

京瓷利用SN氮化硅材料研发高性能FTIR光源

京瓷株式会社(以下简称京瓷)成功研发用于FTIR※的氮化硅(Silicon Nitride,以下简称SN)高性能光源。
2023-12-15 09:18:06234

英特尔发力具有集成驱动器的氮化镓GaN器件

在最近的IEDM大会上,英特尔表示,已将 CMOS 硅晶体管与氮化镓 (GaN) 功率晶体管集成,用于高度集成的48V设备。
2023-12-14 09:23:06548

化硅氮化镓哪个好

化硅氮化镓的区别  碳化硅(SiC)和氮化镓(GaN)是两种常见的宽禁带半导体材料,在电子、光电和功率电子等领域中具有广泛的应用前景。虽然它们都是宽禁带半导体材料,但是碳化硅氮化镓在物理性质
2023-12-08 11:28:51740

光子集成电路+III-V族半导体,红外探测器前景广阔

VIGO预计,在气体分析、空气质量检测、有害物质检测和激光探测等主要应用的推动下,2020年至2030年期间,光子红外传感器市场的复合年增长率(CAGR)约为20%,从3.05亿美元增至9.69亿美元。
2023-12-04 15:26:16420

什么是氮化镓合封芯片科普,氮化镓合封芯片的应用范围和优点

氮化镓功率器和氮化镓合封芯片在快充市场和移动设备市场得到广泛应用。氮化镓具有高电子迁移率和稳定性,适用于高温、高压和高功率条件。氮化镓合封芯片是一种高度集成的电力电子器件,将主控MUC、反激控制器、氮化镓驱动器和氮化镓开关管整合到一个...
2023-11-24 16:49:22350

光子集成电路的特性

光子学因其从量子计算到生物传感的广泛应用而成为一项关键技术和广泛研究的领域。光子结构的测试和表征需要灵敏、精确和定量的成像和光谱解决方案,从可见光到红外波长(电信波长)。 光子集成电路是利用光执行
2023-11-24 06:33:40214

氮化镓芯片是什么?氮化镓芯片优缺点 氮化镓芯片和硅芯片区别

氮化镓芯片具有许多优点和优势,同时也存在一些缺点。本文将详细介绍氮化镓芯片的定义、优缺点,以及与硅芯片的区别。 一、氮化镓芯片的定义 氮化镓芯片是一种使用氮化镓材料制造的集成电路芯片。氮化镓(GaN)是一种半导体
2023-11-21 16:15:302310

国科光芯实现传输损耗-0.1dB/cm(1550 nm波长)级别氮化硅硅光芯片的量产

)级别氮化硅硅光芯片的量产,工艺良率超95%。   相对于传统硅光技术,氮化硅材料具有损耗低、光谱范围大、可承载光功率大等突出优点。此外,氮化硅硅光芯片也是优异的多材料异质异构平台,可集成磷化铟(InP)、铌酸锂(LiNbO₃)等材料,实现应用更
2023-11-17 09:04:54654

悬浮波导SiO2薄膜的应力和折射率控制

悬浮二氧化硅结构对于许多光学和光子集成电路(PIC)应用是重要的,例如宽光谱频率梳,低传播损耗波导,以及紫外-可见光滤光器等。除了这些应用,悬浮波导还可以应用于紫外吸收光谱和一类新兴的基于氮化
2023-11-16 11:13:50231

光子芯片简介

光子芯片,这是一种依托光子学的集成电路,它将光子器件集成在芯片上 实现 光电子的集成。相较于传统的电子芯片,光子芯片在数据传输速度、能耗以及带宽方面都有着显著的优势。
2023-11-15 17:41:501017

东风首批自主碳化硅功率模块下线

这是纳米碳化硅模块烧结工艺,使用铜键合技术,高性能氮化硅陶瓷衬板和定制化pin-fin散热铜基板,热电阻现有工程相比改善了10%以上,工作温度可达175igbt模块相比损失大幅减少40%以上,车辆行驶距离5 - 8%提高了。
2023-11-02 11:19:18342

Ka波段基片集成波导带通滤波器的设计

电子发烧友网站提供《Ka波段基片集成波导带通滤波器的设计.pdf》资料免费下载
2023-10-25 11:18:320

汽车功率模块中AMB陶瓷基板的作用及优势

氮化硅(Si3N4) 基板在各项性能方面表现最佳,可以提供最佳的可靠性和高功率密度,例如在高级电动汽车驱动逆变器中的应用。
2023-10-23 12:27:13408

讯天宏100W氮化镓充电器详细的拆解报告

讯天宏这款氮化镓充电器采用多块小板组合焊接而成,PCBA模块正面覆盖黄铜散热片,背面粘贴导热垫加强散热。充电器内置恩智浦TEA2016高集成电源芯片,内置英诺赛科氮化镓开关管和森国科碳化硅二极管。采用同步整流,固定电压输出。
2023-10-20 10:40:56477

华为公开光通信技术专利:可降低光模块尺寸、成本及功耗

根据专利摘要,本申请提供下列光芯片、光模块及通信设备,光芯片包括:硅波导层、氮化硅波导层、电光调制器和光电探测器。光电探测器包括锗本征结构,以及位于锗本征结构两侧的P型掺杂区和N型掺杂区;锗本征结构、P型掺杂区和N型掺杂区集成于硅波导层内。
2023-10-10 10:20:02574

氮化镓和碳化硅的结构和性能有何不同

作为第三代功率半导体的绝世双胞胎,氮化镓MOS管和碳化硅MOS管日益受到业界特别是电气工程师的关注。电气工程师之所以如此关注这两种功率半导体,是因为它们的材料与传统的硅材料相比具有许多优点。 氮化
2023-10-07 16:21:18325

沉积氮化硅薄膜的重要制备工艺——PECVD镀膜

PECVD作为太阳能电池生产中的一种工艺,对其性能的提升起着关键的作用。PECVD可以将氮化硅薄膜沉积在太阳能电池片的表面,从而有效提高太阳能电池的光电转换率。但为了清晰客观的检测沉积后太阳能电池
2023-09-27 08:35:491772

硅基氮化镓未来发展趋势分析

GaN 技术持续为国防和电信市场提供性能和效率。目前射频市场应用以碳化硅氮化镓器件为主。虽然硅基氮化镓(GaN-on-Si)目前不会威胁到碳化硅氮化镓的主导地位,但它的出现将影响供应链,并可能塑造未来的电信技术。
2023-09-14 10:22:36647

功率器件在工业应用的解决方案

功率器件在工业应用的解决方案,议程分为:功率分立器件概览 、 IGBT产品3、高压MOSFET 、 碳化硅Mosfet、碳化硅二极管和整流器、氮化镓PowerGaN、工业电源的应用和总结八个部分。
2023-09-05 06:13:28

半导体的未来超级英雄:氮化镓和碳化硅的奇幻之旅

半导体氮化
北京中科同志科技股份有限公司发布于 2023-08-29 09:37:38

云服务和5G需求带动硅光子成长

在光电子融合中,硅光子学发挥着核心作用。硅光子学是一种利用CMOS制程技术,支援半导体工业在硅基板上整合光接收元件、光调变器、光波导和电子电路等元件的技术。负责转换光讯号和电讯号的光收
2023-08-24 10:36:02295

陶瓷散热基板投资图谱

陶瓷散热基板中的“陶瓷”,并非我们通常认知中的陶瓷,属于电子陶瓷材料,主要用于陶瓷封装壳体和陶瓷基板,主要成分包括氮化铝(AlN)、氮化硅(Si3N4)、碳化硅(SiC)、氧化铍(BeO)等。与传统的陶瓷有个共性,主要化学成分都是硅、铝、氧三种元素。
2023-08-23 15:07:30638

Y波导插损测量方法简析

铌酸锂多功能集成件(Y波导)采用微电子工艺在铌酸锂晶片上制造波导和电极,光纤与波导精密耦合可让外部光源耦合进Y波导中,通过电压调制可实现输入光的起偏、检偏、分束、合束、相位调制等功能。
2023-08-18 10:16:571120

基于OFDR的高分辨率光学链路诊断仪对平面光波导延迟线进行测量

平面波导延时线具有尺寸小、易集成等优势,不仅可以通过精确调制波导长度控制延时时间,而且能容易地制备出超长的波导线,在硅光子集成芯片系统中有着重要的应用。
2023-08-14 11:00:09212

如何制作同时集成激光器和光子波导的芯片呢?

来自美国加州大学圣巴巴拉分校与加州理工学院的科研团队合作开发出了首款同时集成激光器和光子波导的芯片,向在硅上实现复杂系统和网络迈出了关键一步。
2023-08-12 09:24:21842

全球首次实现单芯片光子IC

美国研究人员首次将超低噪声激光器(ultralow-noise lasers)和光子波导(photonic waveguides)集成到单个芯片上。这一期待已久的成就可以使在单个集成设备中使用原子钟和其他量子技术进行高精度实验成为可能,从而消除在某些应用中对房间大小的光学平台的需求。
2023-08-10 10:15:38250

氮化镓和碳化硅谁将赢得宽带隙之战?

氮化镓和碳化硅正在争夺主导地位,它们将减少数十亿吨温室气体排放。
2023-08-07 14:22:08837

纳微半导体:氮化镓和碳化硅齐头并进,抓住继充电器之后的下一波热点应用

早前,纳微半导体率先凭借氮化镓功率芯片产品,踩准氮化镓在充电器和电源适配器应用爆发的节奏,成为氮化镓领域的头部企业。同时,纳微也不断开发氮化镓和碳化硅产品线,拓展新兴应用市场。在2023慕尼黑上海
2023-08-01 16:36:191553

光子集成电路(PIC)加速未来光子芯片的开发周期

液晶技术和MEMS技术使可重新编程光子集成电路(PIC)成为可能,这些PIC能够支持多种功能,并显著加速未来光子芯片的开发周期。
2023-07-31 09:29:413678

红外探测器:热探测器与光子探测器

红外探测器是红外热成像技术领域的核心器件,其主要用于检测物体发出的红外辐射。按照探测器原理不同,红外探测器通常可以分为两大类:热探测器和光子探测器。这两种探测器各自具有一套独特的工作原理,在本文
2023-07-19 17:12:471266

氮化硅是半导体材料吗 氮化硅的性能及用途

氮化硅是一种半导体材料。氮化硅具有优异的热稳定性、机械性能和化学稳定性,被广泛应用于高温、高功率和高频率电子器件中。它具有较宽的能隙(大约3.2电子伏特),并可通过掺杂来调节其导电性能,因此被视为一种重要的半导体材料。
2023-07-06 15:44:433823

氮化硅陶瓷基板生产工艺 氮化铝和氮化硅的性能差异

氮化铝具有较高的热导性,比氮化硅高得多。这使得氮化铝在高温环境中可以更有效地传导热量。
2023-07-06 15:41:231061

氮化硅陶瓷在四大领域的研究及应用进展

氮化硅陶瓷轴承球与钢质球相比具有突出的优点:密度低、耐高温、自润滑、耐腐蚀。疲劳寿命破坏方式与钢质球相同。陶瓷球作为高速旋转体产生离心应力,氮化硅的低密度降低了高速旋转体外圈上的离心应力。
2023-07-05 10:37:061561

微型化自由运行单光子探测器的设计实现

,是大气遥感、三维成像等激光雷达系统的理想工作波段。近红外波段单光子探测技术主要包括超导纳米线单光子探测器、上转换单光子探测器和InGaAs/InP单光子探测器。其中,InGaAs/InP单光子探测器具有体积小、低成本、易于系统集成和良好的综合性能指标等优势,是实用化1.5 μm激光雷达的最佳选择。
2023-07-03 16:31:45466

5-10 µm波段超导单光子探测器设计与研制

高性能的中长波单光子探测器在红外天文和军事国防领域具有重要的研究价值,也是单光子探测技术领域的研究难点。
2023-06-29 09:46:02368

光子芯片的原理、制造技术及应用

光子芯片(Photonics Chip)是一种基于光子学原理的集成电路芯片,其主要应用于光通信、光存储、光计算、光传感等领域。与传统电子芯片相比,光子芯片具有更高的速度、更低的功耗、更大的带宽等优势,因此被视为下一代信息技术的重要发展方向。本文将从光子芯片的原理、制造技术、应用等方面进行详细介绍。
2023-06-28 17:27:498167

零偏压下近红外集成单波长波导光探测器

工作在零偏压下的波导光探测器外电路简单,器件具有低功耗、易集成等优点,因此设计零偏压下的高速、高响应度、具有波长选择性的波导光探测器具有重要意义和更广阔的应用前景。
2023-06-28 09:34:38473

短波红外光子探测器的发展

光子探测器达到了光电探测的极限灵敏度,InP/InGaAs 短波红外光子探测器 (SPAD) 是目前制备技术较为成熟且获得广泛应用的单光子探测器。
2023-06-28 09:31:54533

陶瓷基板制备工艺研究进展

目前常用的高导热陶瓷粉体原料有氧化铝(Al2O3)、氮化铝(AlN)、氮化硅(Si3N4)、碳化硅(SiC)和氧化铍(BeO)等。随着国家大力发展绿色环保方向,由于氧化铍有毒性逐渐开始退出历史的舞台。
2023-06-27 15:03:56543

有关氮化镓半导体的常见错误观念

氮化镓(GaN)是一种全新的使能技术,可实现更高的效率、显着减小系统尺寸、更轻和于应用取得硅器件无法实现的性能。那么,为什么关于氮化镓半导体仍然有如此多的误解?事实又是怎样的呢? 关于氮化镓技术
2023-06-25 14:17:47

光子芯片的原理和应用

光子芯片是一种基于光子学的集成电路,将光子器件集成在芯片上,实现了光电子集成。相比传统的电子芯片,光子芯片具有更高的数据传输速度、更低的能耗和更大的带宽。光子芯片的出现将会改变通信、计算、传感等领域的面貌,具有广阔的应用前景。
2023-06-21 10:04:517253

基于InGaAs NFAD的集成型低噪声近红外光子探测器

近年来,基于InGaAs单光子雪崩二极管(SPAD)的近红外光子探测技术在远距离激光雷达等系统中的应用日益广泛,展现了其低功耗、小体积等优势。
2023-06-21 09:37:55531

氮化镓(GaN)功率集成电路集成和应用

氮化镓(GaN)功率集成电路集成与应用
2023-06-19 12:05:19

纳微集成氮化镓电源解决方案和应用

纳微集成氮化镓电源解决方案及应用
2023-06-19 11:10:07

AN011: NV612x GaNFast功率集成电路(氮化镓)的热管理分析

AN011: NV612x GaNFast功率集成电路(氮化镓)的热管理
2023-06-19 10:05:37

GaN功率半导体(氮化镓)的系统集成优势介绍

GaN功率半导体(氮化镓)的系统集成优势
2023-06-19 09:28:46

GaN功率集成电路在关键应用的系统级影响

纳维半导体•氮化镓功率集成电路的性能影响•氮化镓电源集成电路的可靠性影响•应用示例:高密度手机充电器•应用实例:高性能电机驱动器•应用示例;高功率开关电源•结论
2023-06-16 10:09:51

什么是氮化镓功率芯片?

通过SMT封装,GaNFast™ 氮化镓功率芯片实现氮化镓器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, power out
2023-06-15 16:03:16

为什么氮化镓比硅更好?

,在半桥拓扑结构结合了频率、密度和效率优势。如有源钳位反激式、图腾柱PFC和LLC。随着从硬开关拓扑结构到软开关拓扑结构的改变,初级FET的一般损耗方程可以最小化,从而提升至10倍的高频率。 氮化镓功率芯片前所未有的性能表现,将成为第二次电力电子革命的催化剂。
2023-06-15 15:53:16

氮化镓: 历史与未来

,以及基于硅的 “偏转晶体管 “屏幕产品的消亡。 因此,氮化镓是我们在电视、手机、平板电脑、笔记本电脑和显示器,使用的高分辨率彩色屏幕背后的核心技术。在光子方面,氮化镓还被用于蓝光激光技术(最明显
2023-06-15 15:50:54

为什么氮化镓(GaN)很重要?

氮化镓(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用,传统硅器件在能量转换方面,已经达到了它的物理
2023-06-15 15:47:44

什么是氮化镓(GaN)?

氮化镓,由镓(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,氮化镓的禁带宽度为 3.4eV,是硅
2023-06-15 15:41:16

氮化镓功率芯片如何在高频下实现更高的效率?

氮化镓为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化镓的典型开关频率(65kHz)相比,集成氮化镓器件提升到的 200kHz。 氮化镓电源 IC 在
2023-06-15 15:35:02

氮化镓功率芯片的优势

更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化镓电源 IC 的集成设计使其非常
2023-06-15 15:32:41

谁发明了氮化镓功率芯片?

,是氮化镓功率芯片发展的关键人物。 首席技术官 Dan Kinzer在他长达 30 年的职业生涯,长期担任副总裁及更高级别的管理职位,并领导研发工作。他在硅、碳化硅(SiC)和氮化镓(GaN)功率芯片方面
2023-06-15 15:28:08

什么是氮化镓功率芯片?

氮化镓(GaN)功率芯片,将多种电力电子器件整合到一个氮化镓芯片上,能有效提高产品充电速度、效率、可靠性和成本效益。在很多案例氮化镓功率芯片,能令先进的电源转换拓扑结构,从学术概念和理论达到
2023-06-15 14:17:56

集成微波光子射频前端技术详解

,构建基于光子集成芯片技术的微波光子射频前端微系统势在必行。文章分析了集成微波光子射频前端微系统目前在器件层面和系统集成层面面临的挑战,并从高精细、可重构的光滤波器设计、混合集成系统架构设计和系统频率漂移抑制方案三个方面重点介绍了作者所在课题组开展的关于混合集成可重构微波光子射频前端的研究现状。
2023-06-14 10:22:321273

陶瓷、高频、普通PCB板材区别在哪?

。常用的陶瓷基材料包括氧化铝、氮化铝、氧化锆、ZTA、氮化硅、碳化硅等。FR线路板是指以环氧玻璃纤维布作为主要材料的线路。那么,陶瓷线路板与普通PCB板材区别在哪? 一、陶瓷基板与pcb板的区别 1、材料
2023-06-06 14:41:30

国瓷材料:DPC陶瓷基板国产化突破

氮化铝为大功率半导体优选基板材料。氧化铍(BeO)、氧化铝(Al2O3)、 氮化铝(AlN)和氮化硅(Si3N4)4 种材料是已经投入生产应用的主要陶瓷基板 材料,其中氧化铝技术成熟度最高、综合性能好、性价比高,是功率器件最为常用 的陶瓷基板,市占率达 80%以上。
2023-05-31 15:58:35876

光子集成电路的建模改进

首先,一些背景:与IC设计中使用的典型电信号相比,光子信号相当复杂。光子信号可以以幅度、相位、偏振和空间模式传输信息。此外,使用多个波长的光将许多信号多路复用到一个公共波导上是很常见的。最后,对于
2023-05-24 14:23:39510

滨松InGaAs相机在光波导领域的应用案例

  红外相机InGaAs在光波导方向的应用案例介绍。 案例介绍 推荐相机 案例:波导耦合 InGaAs相机 案例:光纤波导耦合对准 InGaAs相机 案例:硅波导损耗分析 InGaAs相机
2023-05-23 07:03:42303

氮化硅(Si3N4)的理论热导率上限

热管理对高集成度和高功率密度电子器件的正常运行至关重要。高性能电子器件运行时会产生大量的热量,如果不能有效及时地将这些热量排出,就会导致器件过热,进而影响性能,甚至损坏器件。优秀的热管理材料应当同时具备高导热性能和机械性能,以避免器件过热或断裂。
2023-05-16 17:45:44756

国产氮化硅陶瓷基板邂逅碳化硅功率模块,国产新能源汽车开启性能狂飙模式

新能源电动汽车爆发式增长的势头不可阻挡,氮化硅陶瓷基板升级SiC功率模块,对提升新能源汽车加速度、续航里程、充电速度、轻量化、电池成本等各项性能尤为重要。
2023-05-02 09:28:451169

中国学者实现光子芯片里程碑目标:在单个硅光芯片上集成激光与光频梳先进工艺

香港大学电机与电子工程系助理教授向超以异质光子集成、硅光子学、半导体激光器和光子集成电路为研究方向,并主导研发了一系列硅基异质集成光电子器件,主要包括氮化硅上单片集成激光器、硅基激光光孤子频率梳生成器、硅基窄线宽激光器等。
2023-04-25 10:16:011093

《炬丰科技-半导体工艺》III-V集成光子的制备

了一系列III-V材料以及各种各样的设备。 最初,设计,制造和光学表征研究了铝砷化镓波导增强光学非线性文章全部详情:壹叁叁伍捌零陆肆叁叁叁耳相互作用。 基于我们的研究结果,我们提出了一种新型的AlGaAs集成非线性光学波导波导集成光子器件中极具吸引力的元件,
2023-04-19 10:04:00130

多孔氮化硅陶瓷天线罩材料制备及性能研究

近日,上海玻璃钢研究院有限公司的高级工程师赵中坚沿着该思路,以纯纤维状α-Si3N4粉为主要原料,通过添加一定比例氧化物烧结助剂,经冷等静压成型和气氛保护无压烧结工艺烧结制备出了能充分满足高性能导弹天线罩使用要求的多孔氮化硅陶瓷。
2023-04-16 10:30:461274

谁才是最有发展前途的封装材料呢?

目前,常用电子封装陶瓷基片材料包括氧化铝(Al2O3)、氮化铝(AlN)、氮化硅(Si3N4)、氧化铍(BeO)、碳化硅(SiC)等。那么,谁才是最有发展前途的封装材料呢?
2023-04-13 10:44:04801

氮化硅陶瓷基板的市场优势和未来前景

氮化硅基板是一种新型的材料,具有高功率密度、高转换效率、高温性能和高速度等特点。这使得氮化硅线路板有着广泛的应用前景和市场需求,正因为如此斯利通现正全力研发氮化硅作为基材的线路板。
2023-04-11 12:02:401364

芯片级氮化硅无源光隔离器

光隔离器是一种只允许单向光通过的无源光器件,其主要特点是:正向插入损耗低,反向隔离度高,回波损耗高。目前已经有多种片上光隔离方案,但这些方案大多依赖于磁光材料的集成或声光或电光调制器的高频调制。
2023-04-03 16:19:041633

高效率低能耗干法超细研磨与分散压电陶瓷等硬质矿物材料技术升级

氮化硅研磨环由于研磨环存在内外气压差,可以在密闭的真空或者很浓密的场景中快速的上下运动,氮化硅磨介圈在大的球磨机里不仅起到研磨粉碎的作用,更重要的是众多的氮化硅磨介圈环会发生共振现象,氮化硅
2023-03-31 11:40:35597

纳微半导体发布全新GaNSense™ Control合封氮化镓芯片,引领氮化镓迈入集成新高度

高频、高压的氮化镓+低压硅系统控制器的战略性集成, 实现易用、高效、可快速充电的电源系统 美国加利福尼亚州托伦斯,2023年3月20日讯 —— 唯一全面专注的下一代功率半导体公司及氮化镓和碳化硅功率
2023-03-28 13:54:32723

SW1106集成氮化镓直驱的高频准谐振模式反激控制器

,可直接用于驱动氮化镓功率管;芯片工作于带谷底锁定功能的谷底开启模式,同时集成频率抖动功能以优化 EMI 性能;当负载降低时,芯片从 PFM 模式切换至 BURST 模式工作以优化轻载效率,空载待机功耗
2023-03-28 10:31:57

集成氮化镓直驱的高频准谐振模式反激控制器

电压,可直接用于驱动氮化镓功率管;芯片工作于带谷底锁定功能的谷底开启模式,同时集成频率抖动功能以优化 EMI 性能;当负载降低时,芯片从 PFM 模式切换至 BURST 模式工作以优化轻载效率,空载待机
2023-03-28 10:24:46

已全部加载完成