0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

芯片级氮化硅无源光隔离器

jf_78858299 来源:先进光子学 作者:小光 2023-04-03 16:19 次阅读

光隔离器是一种只允许单向光通过的无源光器件,其主要特点是:正向插入损耗低,反向隔离度高,回波损耗高。目前已经有多种片上光隔离方案,但这些方案大多依赖于磁光材料的集成或声光或电光调制器的高频调制。

近期,美国斯坦福大学 Vučković教授团队联合加州大学研究人员[1],基于氮化硅材料设计了一种无源微纳光隔离器,实现了单微环隔离度17-23dB,插入损耗1.8-5.5dB;级联微环隔离度达到35dB,插入损耗 5dB。同时还将半导体激光二极管芯片对接耦合到氮化硅隔离器,在片上系统中验证了光学隔离。这种光隔离器既可以有效稳定激光和降低噪声,同时保障了激光输出的安全性,有助于提高光学元件的使用寿命。该隔离器不依靠磁光、电光效应的高频调制,具备较好的延展性,可被广泛应用于芯片级激光器的设计[2]。

氮化硅无源光隔离器显著优势

光隔离器极大程度上防止光路中由于各种原因产生的后向传输光对光源以及光路系统产生不良影响。随着集成光路日益集成化和小型化,很多研究工作也转移到如何将光隔离器与片上COMS工艺集成问题上。近年来,研究者通过引入驱动装置,以实现主动集成隔离器,然而这对外部驱动器的要求增加了系统复杂性,还引入了更高的功耗。此外,高功率射频驱动器会产生大量电磁背景,导致集成敏感元器件受到干扰。因此为了提高隔离器的性能,完全无源和无磁才是隔离器最佳的选择。

Vučković教授团队以氮化硅谐振腔为设计单元,基于非线性Kerr效应实现了集成连续波隔离器。Kerr效应打破了微环的顺时针和逆时针模式之间的简并,允许非互易传输。该器件是完全无源的,除了激光器外,不需要任何输入,唯一的能量消耗即振荡器环形隔离器之间极小的插入损耗。而且氮化硅薄膜器件具有CMOS工艺兼容性,可量化生产,有力地推动了下一代芯片级激光器的进步和发展。

氮化硅无源光隔离器工作原理

克尔效应是由于材料的三阶非线性磁化率而引起的折射率变化,表现为对材料折射率的影响,可以改变光的传输状态。如图1(a)所示,光通过隔离器时对微环进行热光调制,导致微环共振频率变化,使透射峰发生偏移。在氮化硅微环中,不同传输方向的光源分别会受到自相位调制和交叉相位调制作用,导致不同方向激光的透射峰产生位置偏差,当正向传输光的透射率位于透射曲线的峰值时,逆向传播光的透射率则极低,因此可以实现单向传输的设计思路。

该隔离器需要连续的泵浦功率(连续波泵浦或是在环自由光谱范围内脉冲泵浦),但无需额外的驱动或调制,因此非常适合隔离激光器的输出,如图1(b)所示。激光器本身充当隔离的唯一驱动器,除较小的插入损耗外无其它任何功耗,不需要强磁场、有源光调制或高功率RF驱动器,并且设备操作不限于单个光子平台或波长范围。

图片

图1. 单个氮化硅微环谐振隔离器。(a) 集成非线性光学隔离器工作原理示意图;(b) 隔离器与激光器的耦合示意图;(c)氮化硅无源光隔离器实图;(d)不同的输入泵浦功率情况下,理论(虚线)和实验(蓝色点)反向传输透过率谱线。

氮化硅无源光隔离器集成与测试

氮化硅无源光隔离器的隔离度测试方案如图2(a)所示,测试时采用同一光源,以相反的方向通过微环,然后扫描泵浦源并探测共振峰。如图2所示,随着泵浦功率不断增加,无源隔离器的隔离度也逐渐提高。尤其当泵浦功率高达80mW时,反向透射率小于5%,充分验证了氮化硅无源微环隔离器的有效性。

图片

图2. 隔离度的测量方案。(a)测量光路示意图;(b) 反向传输透光率与泵浦功率关系;(c) 泵浦功率与单个微环谐振器隔离度关系。

理想情况下,通过增加波导与微环的耦合效率,使所有功率都被传输到微环中,微环中的所有功率都传输到输出端口,但这会影响谐振的Q值,从而降低隔离度。因此需要平衡耦合系数和隔离度的关系,进一步优化器件,以得到整体最佳性能。实验中通过设计由16个具有不同耦合强度和耦合不对称性的空气包层氮化硅隔离器组成的结构阵列,验证了耦合度越低,隔离度越高,同时也引入更高的插入损耗。且对两组无源隔离器进行了性能分析:1)具有1.8 dB插入损耗和12.9mW隔离阈值的器件,2)具有5.5 dB插入损耗和6.5mW隔离阈的器件(如图2d)。当泵浦功率达到90mW时,峰值隔离分别可以达到16.6dB和23.4dB。

图片

图3.(a)微环隔离器示意图及其关键参数;(b) 耦合系数与隔离度关系热图;(c)微环隔离度与插入损耗的相关性;(d)图b中突出显示单元隔离度研究。

对氮化硅微环进行级联优化如图4所示,最终获得了泵浦功率90 mW时,级联隔离器整体的隔离度能够达到35 dB。

图片

图4. 级联隔离器。(a)双环级联隔离器示意图;(b)双环级联隔离器实体图;(c)单环隔离度与输入功率之间的关系;(d)双环级联隔离器正、反向光传输性能;(e)级联隔离器隔离度与输入功率之间的关系。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光隔离器
    +关注

    关注

    0

    文章

    46

    浏览量

    8574
  • 光器件
    +关注

    关注

    9

    文章

    89

    浏览量

    15630
  • 调制器
    +关注

    关注

    3

    文章

    784

    浏览量

    44715
  • 氮化硅
    +关注

    关注

    0

    文章

    68

    浏览量

    153
收藏 人收藏

    评论

    相关推荐

    氮化硅LPCVD工艺及快速加热工艺(RTP)系统详解

    铜金属化过程中,氮化硅薄层通常作为金属层间电介质层(IMD)的密封层和刻蚀停止层。而厚的氮化硅则用于作为IC芯片的钝化保护电介质层(Passivation Dielectric, PD)。下图显示
    发表于 10-17 09:29 8290次阅读

    隔离器应用方案

    1、ISO 4-20mA 隔离器。不需供电,在回路中取得能量。输出4-20mA。传感须有供电电源,从传感输出回路取能量,模块输出有源
    发表于 08-08 11:46

    一文弄懂信号隔离器在控制系统中的接线

    隔离器信号隔离器功能是:对输入这种隔离器
    发表于 01-15 14:04

    智能电能计量应用数字隔离器

    与通信模块之间(隔离 2)必须通过隔离栅 1 和 2 的信号是数字信号。为了隔离数字信号,已经开发出许多技术。传统方法使用带 LED 和光电二极管的耦合
    发表于 10-24 10:15

    氮化硅陶瓷基板助力新能源汽车市场

    适应高温高压的工作环境。氮化硅的散热系数高,热膨胀系数与芯片匹配,同时具有极高的耐热冲击性。能在及时散去电源系统中的高热量,保证各大功率负载的正常运行的同时,保护芯片正常工作。使用氮化硅
    发表于 01-21 11:45

    氮化硅基板应用——新能源汽车核心IGBT

    的振动和冲击力,机械强度要求高。这就不得不提到我们今天的主角,氮化硅基板了。氮化硅的优点1、在高温下具有高强度和断裂韧性。2、散热系数高,热膨胀系数与芯片匹配,同时具有极高的耐热冲击性。3、使用
    发表于 01-27 11:30

    低热量化学气相工艺制备氮化硅

    低热量化学气相工艺制备氮化硅美国Aviza工艺公司开发出一种低温化学气相沉积工艺(LPCVD),可在500℃左右进行氮化硅沉积。这个工艺使用一
    发表于 06-12 21:08 753次阅读

    锗对氮化硅中红外集成光子学的波导

    在中红外波长下,演示了一种具有大纤芯-包层指数对比度的锗基平台——氮化硅锗波导。仿真验证了该结构的可行性。这种结构是通过首先将氮化硅沉积的硅上锗施主晶片键合到硅衬底晶片上,然后通过层转移方法获得氮化硅上锗结构来实现的,该结构可扩
    发表于 12-16 17:37 1116次阅读
    锗对<b class='flag-5'>氮化硅</b>中红外集成光子学的波导

    一种在衬底上蚀刻氮化硅的方法

    本文提供了用于蚀刻膜的方法和设备。一个方面涉及一种在衬底上蚀刻氮化硅的方法,该方法包括:(a)将氟化气体引入等离子体发生器并点燃等离子体以a形成含氟蚀刻溶液;(b)从硅源向等离子体提供硅;以及
    发表于 04-24 14:58 1029次阅读
    一种在衬底上蚀刻<b class='flag-5'>氮化硅</b>的方法

    高导热率氮化硅散热基板材料的研究进展

    针对越来越明显的大功率电子元器件的散热问题,主要综述了目前氮化硅陶瓷作为散热基板材料的研究进展。对影响氮化硅陶瓷热导率的因素、制备高热导率氮化硅陶瓷的方法、烧结助剂的选择、以及氮化硅
    的头像 发表于 12-06 09:42 854次阅读

    氮化硅陶瓷基板的市场优势和未来前景

    氮化硅基板是一种新型的材料,具有高功率密度、高转换效率、高温性能和高速度等特点。这使得氮化硅线路板有着广泛的应用前景和市场需求,正因为如此斯利通现正全力研发氮化硅作为基材的线路板。
    的头像 发表于 04-11 12:02 1453次阅读
    <b class='flag-5'>氮化硅</b>陶瓷基板的市场优势和未来前景

    氮化硅陶瓷基板生产工艺 氮化铝和氮化硅的性能差异

    氮化铝具有较高的热导性,比氮化硅高得多。这使得氮化铝在高温环境中可以更有效地传导热量。
    发表于 07-06 15:41 1241次阅读

    氮化硅是半导体材料吗 氮化硅的性能及用途

    氮化硅是一种半导体材料。氮化硅具有优异的热稳定性、机械性能和化学稳定性,被广泛应用于高温、高功率和高频率电子器件中。它具有较宽的能隙(大约3.2电子伏特),并可通过掺杂来调节其导电性能,因此被视为一种重要的半导体材料。
    的头像 发表于 07-06 15:44 4425次阅读

    国科光芯实现传输损耗-0.1dB/cm(1550 nm波长)级别氮化硅硅光芯片的量产

    )级别氮化硅硅光芯片的量产,工艺良率超95%。   相对于传统硅光技术,氮化硅材料具有损耗低、光谱范围大、可承载光功率大等突出优点。此外,氮化硅硅光
    的头像 发表于 11-17 09:04 766次阅读

    氮化硅为什么能够在芯片中扮演重要的地位?

    芯片制造中,有一种材料扮演着至关重要的角色,那就是氮化硅(SiNx)。
    的头像 发表于 12-20 18:16 664次阅读
    <b class='flag-5'>氮化硅</b>为什么能够在<b class='flag-5'>芯片</b>中扮演重要的地位?