0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

溅射沉积镍薄膜的微观结构和应力演化

jf_01960162 来源:jf_01960162 作者:jf_01960162 2023-11-22 10:20 次阅读

引言

众所周知,材料的宏观性质,例如硬度、热和电传输以及光学描述符与其微观结构特征相关联。通过改变加工参数,可以改变微结构,从而能够控制这些性质。在薄膜沉积的情况下,微结构特征,例如颗粒尺寸和它们的颗粒形态,在沉积技术之间和沉积技术内部可以有很大的不同,导致上述物理响应的变化,即使对于相同的材料也是如此。

特别是薄膜,由于沉积过程,它们可能保留显著的内部残余应力,从而影响这些特定的性能。这些应力还会导致薄膜由于翘曲、破裂或分层机制而失效。事实上,当考虑薄膜的性质时,我们需要同时量化材料的微观结构及其残余应力特征。理解沉积的微结构和其残余应力之间的关系是定制薄膜性能的明确前提。

实验与讨论

Ni膜是在装有四个共焦靶和加热器控制器的溅射室中通过平衡磁控溅射沉积的。为了保持均匀的沉积速率,我们将每层膜在较低压力下由单个Ni靶沉积,或者在较高压力下使用多个Ni靶共溅射靶,每个靶的纯度需要>99.99%。所有的膜都沉积在具有100纳米热生长表面氧化物层的Siu100衬底上,该表面氧化物层以每分钟30转的速度旋转。

对沉积压力的依赖性可以解释为通过增加靶和衬底之间的碰撞次数来改变到达物质的动能。增加沉积压力会降低粒子的到达能量,到达动能的减少会导致更大的拉伸应力。较低的动能降低了表面上吸附原子的迁移率;因此,这种吸附原子的迁移能力限制了它们在后聚结沉积机制中对压缩应力产生机制的贡献。它还减少了碰撞引起的晶界致密化和颗粒引起的缺陷的捕获,这些缺陷会导致压应力。

这些表面拓扑可导致界面能的差异,例如自由表面与柱状晶界能的差异。图1平面取向的明场(BF) TEM显微照片证实了在升高的工作压力下晶粒之间存在裂缝)。裂缝被定义为薄膜微结构中的线性空隙区域。这种裂缝在磁控溅射沉积的镍薄膜中观察到在低溅射功率下。它们的形成归因于Ar和Ni物种之间的高散射相互作用和Ni吸附原子的有限移动性。

wKgaomVdZAOATeldAAH9U4k52Gs275.png图1:透射电镜下沉积的Ni薄膜的环境温度显微图和方向图

当分离的区域朝向彼此“拉伸”以消除自由表面和相关的表面能损失时,这种晶粒间的间隙为拉伸应力的产生创造了条件。此外,致密化的缺乏也证实了导致拉伸应力条件的低吸附原子迁移率。

通过BF TEM成像不容易观察到平均晶粒尺寸或晶粒尺寸分布的显著变化。BF显微图还揭示了沉积温度为0.27帕。定性地说,纹理特征的变化在整个薄膜范围内观察到,从0.27 Pa的中等111〈织构变化到1.33 Pa的弱1〈10〉织构,与沉积速率无关。

一般来说,在较高的压力下,应力对压力的依赖性变小。这主要是由于粒子的能量随着压力的增加而降低,因此它们对应力的能量贡献变得不那么显著。环境温度下0.250 nm/s的生长速率是一个例外,其中0.67 Pa的应力实际上比1.33 Pa的应力略大。这是因为晶粒生长引起的拉伸应力的增加补偿了溅射引起的压缩应力。实验结果显示,表面的晶粒尺寸是另一个可以在实验测量值和拟合结果之间进行比较的参数

结论

在一定的沉积速率、工作压力和衬底温度下,英思特将一系列Ni薄膜溅射沉积到Si衬底上的热生长无定形二氧化硅表面上。我们研究发现在0.27 Pa的环境温度下沉积的薄膜在20-800nm的宽范围内具有双峰粒度分布。

相比之下,在0.67 Pa和1.33 Pa下沉积的薄膜保持了窄的纳米晶粒尺寸结构,但是晶界之间的不完全致密化通过裂缝明显。这些微观结构的差异促成了应力-厚度乘积的演变,其趋势表明拉伸应力响应随压力的增加而增加。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • IC
    IC
    +关注

    关注

    35

    文章

    5544

    浏览量

    173225
  • 晶粒
    +关注

    关注

    0

    文章

    24

    浏览量

    3668
收藏 人收藏

    评论

    相关推荐

    薄膜的纯度与什么有关?

    )110100100010-910-310-410-510-610-710-110-210-310-410-510110-110-210-3103102101 另一方面,在溅射工艺中,沉积速率一般比蒸发低2个数量级,而压力比蒸发高4个数量级,因此所
    发表于 12-08 11:08

    磁控溅射WO3薄膜特性研究

    用磁控溅射法制成WO3 薄膜,通过改变成膜的溅射参数来改变WO3 薄膜的性能. 利用XRD分析了样品的粒径大小,研究了成膜工艺参数对气敏元件性能的影响. 结果表明,
    发表于 06-30 10:01 4次下载

    硅单晶(或多晶)薄膜沉积

    硅单晶(或多晶)薄膜沉积 硅(Si)单晶薄膜是利用气相外延(VPE)技术,在一块单晶Si 衬底上沿其原来的结晶轴方向,生长一层导电类型
    发表于 03-09 13:23 7271次阅读

    碲化镉薄膜太阳能电池及其溅射制备

    碲化镉薄膜太阳能电池及其溅射制备
    发表于 02-08 00:33 6次下载

    采用射频磁控溅射系统制备氧化锌薄膜

    本文介绍了我们华林科纳采用射频磁控溅射系统,在衬底温度为275°C的氩气气氛下,在玻璃衬底上制备了氧化锌薄膜,将沉积的氧化锌薄膜在稀释的盐酸中蚀刻,制备出表面纹理的氧化锌。研究了合成膜
    发表于 05-09 17:01 1402次阅读
    采用射频磁控<b class='flag-5'>溅射</b>系统制备氧化锌<b class='flag-5'>薄膜</b>

    薄膜沉积设备介绍

    薄膜沉积设备介绍
    发表于 06-22 15:22 10次下载

    物理气相沉积溅射工艺(PVD and Sputtering)

    物理气相沉积(Physical Vapor Deposition, PVD)工艺是指采用物理方法,如真空蒸发、溅射 (Sputtering)镀膜、离子体镀膜和分子束外延等,在圆片表面形成薄膜
    的头像 发表于 11-03 15:32 4495次阅读

    PVD和CVD无机薄膜沉积方式大全

    溅射镀膜(Vacuum Sputtering)基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表
    的头像 发表于 02-24 09:51 2823次阅读

    基于PVD 薄膜沉积工艺

    。 PVD 沉积工艺在半导体制造中用于为各种逻辑器件和存储器件制作超薄、超纯金属和过渡金属氮化物薄膜。最常见的 PVD 应用是铝板和焊盘金属化、钛和氮化钛衬垫层、阻挡层沉积和用于互连金属化的铜阻挡层种子
    的头像 发表于 05-26 16:36 2014次阅读

    与传统溅射或热蒸发技术相比,离子束辅助沉积有哪些优势?

    离子束辅助沉积 (IBAD) 是一种薄膜沉积技术,可与溅射或热蒸发工艺一起使用,以获得具有出色工艺控制和精度的最高质量薄膜
    的头像 发表于 06-08 11:10 1144次阅读
    与传统<b class='flag-5'>溅射</b>或热蒸发技术相比,离子束辅助<b class='flag-5'>沉积</b>有哪些优势?

    KRi 射频离子源 IBSD 离子束溅射沉积应用

    上海伯东美国 KRi 考夫曼品牌 RF 射频离子源, 无需灯丝提供高能量, 低浓度的宽束离子束, 离子束轰击溅射目标, 溅射的原子(分子)沉积在衬底上形成薄膜, IBSD 离子束
    的头像 发表于 05-25 10:18 565次阅读
    KRi 射频离子源 IBSD 离子束<b class='flag-5'>溅射</b><b class='flag-5'>沉积</b>应用

    溅射生长的铜和钨薄膜应力调整

    薄膜和多层中的应力会降低性能,甚至导致技术应用中的故障,通过诸如破裂、弯曲或分层的机制。然而,在某些情况下,应力是理想的,因为它可以用来提高涂层的特定性能,例如导电性,热稳定性,机械强度或磁性。由于这个原因,评估和控制
    的头像 发表于 09-28 10:04 240次阅读
    <b class='flag-5'>溅射</b>生长的铜和钨<b class='flag-5'>薄膜</b>的<b class='flag-5'>应力</b>调整

    光纤传感器在磁控溅射镀膜温度的监测

    常重要的技术之一,其次由于具有溅射速率高,沉积速率高,沉积温度低,薄膜质量好的等优点,越来越受到有关方面的关注。 磁控溅射原理 磁控
    的头像 发表于 12-04 11:17 312次阅读
    光纤传感器在磁控<b class='flag-5'>溅射</b>镀膜温度的监测

    薄膜电容的工艺与结构介绍

    。 一、薄膜电容的工艺 薄膜电容的制造工艺主要包括金属薄膜沉积、光刻、腐蚀等步骤。 金属薄膜沉积
    的头像 发表于 01-10 15:41 754次阅读
    <b class='flag-5'>薄膜</b>电容的工艺与<b class='flag-5'>结构</b>介绍

    沉积温度和溅射功率对ITO薄膜性能的影响研究

    ITO薄膜在提高异质结太阳能电池效率方面发挥着至关重要的作用,同时优化ITO薄膜的电学性能和光学性能使太阳能电池的效率达到最大。沉积温度和溅射功率也是ITO
    的头像 发表于 03-05 08:33 359次阅读
    <b class='flag-5'>沉积</b>温度和<b class='flag-5'>溅射</b>功率对ITO<b class='flag-5'>薄膜</b>性能的影响研究