0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

沉积温度和溅射功率对ITO薄膜性能的影响研究

美能光伏 2024-03-05 08:33 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

ITO薄膜在提高异质结太阳能电池效率方面发挥着至关重要的作用,同时优化ITO薄膜的电学性能和光学性能使太阳能电池的效率达到最大。沉积温度溅射功率也是ITO薄膜制备过程中的重要参数,两者对ITO薄膜的电阻率和透过率有极大影响。美能扫描四探针方阻测试仪能够帮助用户优化太阳能电池的电学特性,美能分光光度计支持紫外至近红外区域测定,开启光学检测新未来!本篇文章将给大家讲解沉积温度和溅射功率对ITO薄膜的电学和光学性能的影响。

沉积温度

1.电学性能

沉积温度通过改变生长过程中的微观结构来影响ITO薄膜的性能。随着沉积温度的升高,载流子浓度先增大后减小,因为沉积温度升高时Sn4+更有利于取代In3+,从而增加载流子。当温度为190℃时,载流子浓度降低,这是由于Sn在高温下能与O2充分反应,生成复合化学计量比比较完整的氧化物,导致载流子浓度降低。然而,迁移率随着沉积温度的升高而增加,并在270℃时达到最大值。原因是沉积温度的升高提高了结晶度,这有助于提高迁移率。

f4296fd4-da87-11ee-9118-92fbcf53809c.png

沉积温度影响ITO薄膜的电学特性

2.光学性能

ITO薄膜的透过率随着沉积温度的升高而增加,在270℃时达到最大值90.9%。一方面,Sn4+在高沉积温度下更有利于取代In3+,从而生成较少的低价棕色氧化物,从而提高可见光透过率。另一方面,它可以提高高沉积温度下的结晶度。

f43c2534-da87-11ee-9118-92fbcf53809c.png

沉积温度影响ITO薄膜的光学特性

f41d7efe-da87-11ee-9118-92fbcf53809c.gif

溅射功率

溅射功率对ITO薄膜的导电性能也有非常重要的作用,进而通过影响溅射粒子的能量来影响ITO薄膜的致密性以及与硅片之间的附着力

1.电学性能

f444a90c-da87-11ee-9118-92fbcf53809c.png

溅射功率影响ITO薄膜的电学特性

从上图可以看出,载流子浓度随着溅射功率的增加而增加。由于较高的溅射功率会产生大量的溅射颗粒,在相同氧含量下,氧气不足以充分氧化溅射颗粒,从而使载流子浓度增加。随着溅射功率的增大,迁移率先增大后减小。随着溅射功率的增加,氩离子可以获得更高的能量,有利于提高ITO薄膜与衬底之间的附着力,从而改善薄膜的晶体结构,载流子迁移率进一步提高。然而,当溅射功率继续增加时,薄膜会受到损伤,载流子迁移率会降低,因此ITO薄膜的电阻率随着溅射功率的增加先下降后上升。另外,溅射功率不应超过阈值。一方面,如果溅射功率过高,高能粒子会对薄膜造成损伤,进一步影响薄膜的导电性能。另一方面,陶瓷靶材脆性大,用大功率轰击很容易导致断裂。

2.光学性能

随着溅射功率的增加,ITO薄膜的透过率先增大后略有减小。溅射粒子在低溅射功率下受到限制,溅射粒子可以被氧气完全氧化,生成高电阻、透明的氧化物;因此,透过率可以达到90%以上。然而,随着溅射功率的增加,溅射颗粒数量增加,在氧含量不变的情况下,只有部分颗粒被氧化,导致ITO薄膜的透过率下降。另外,随着溅射功率的增加,载流子浓度达到最大值,导致透过率下降。

f45cdafe-da87-11ee-9118-92fbcf53809c.png

溅射功率影响ITO薄膜的光学特性

f41d7efe-da87-11ee-9118-92fbcf53809c.gif

美能扫描四探针方阻测试仪FPP230A

f4751498-da87-11ee-9118-92fbcf53809c.png

美能扫描四探针方阻测试仪可以对最大230×230mm的样品进行快速、自动的扫描,获得样品不同位置的方阻/电阻率分布信息,可广泛应用于光伏、半导体、合金、陶瓷等诸多领域。

  • 超高测量范围,测量1mΩ~100MΩ

  • 高精密测量,动态重复性可达0.2%

  • 全自动多点扫描,多种预设方案亦可自定义调节

快速材料表征,可自动执行校正因子计算

美能分光光度计UVN2800

f495ee70-da87-11ee-9118-92fbcf53809c.png

美能分光光度计支持测定从紫外区到近红外区的广范围波长区域的太阳光透过率,为太阳电池的效率分析提供了有力支持。设备采用独特的双光束光学设计,可以完美地校正不同样品基质的吸光度变化,从而可稳定地进行样品的测定,具有测试范围广、精度高以及稳定性好的优点

  • 采用双光源双检测器设计,波长范围190-2800nm

  • 双光栅光学结构、有效降低杂散光

积分球直径可达100mm,长期使用不发黄变性、光学性能稳定

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 太阳能电池
    +关注

    关注

    22

    文章

    1267

    浏览量

    73004
  • 检测
    +关注

    关注

    5

    文章

    4785

    浏览量

    93783
  • ITO
    ITO
    +关注

    关注

    0

    文章

    56

    浏览量

    20196
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    基于光学成像的沉积薄膜均匀性评价方法及其工艺控制应用

    静电喷涂沉积(ESD)作为一种经济高效的薄膜制备技术,因其可精确调控薄膜形貌与化学计量比而受到广泛关注。然而,薄膜的厚度均匀性是影响其最终性能
    的头像 发表于 12-01 18:02 109次阅读
    基于光学成像的<b class='flag-5'>沉积</b><b class='flag-5'>薄膜</b>均匀性评价方法及其工艺控制应用

    Vishay PEP功率增强型薄膜片式电阻器技术解析与应用指南

    Vishay/Sfernice PEP功率增强型薄膜片式电阻器具有39Ω至900kΩ宽电阻范围,耐受温度高达+250°C。这些电阻器设计用于大功率应用,具有低噪声、出色的稳定性、低
    的头像 发表于 11-17 10:26 261次阅读
    Vishay PEP<b class='flag-5'>功率</b>增强型<b class='flag-5'>薄膜</b>片式电阻器技术解析与应用指南

    薄膜电阻与陶瓷电容性能对比

    薄膜电阻与陶瓷电容在性能上各有优势,薄膜电阻以高精度、低温漂、低噪声见长,适用于精密测量与高频电路;陶瓷电容则以高频特性、微型化与高可靠性为核心优势,广泛应用于电源管理与射频电路。以下是对两者的详细
    的头像 发表于 11-04 16:33 392次阅读
    <b class='flag-5'>薄膜</b>电阻与陶瓷电容<b class='flag-5'>性能</b>对比

    四探针法 | 测量射频(RF)技术制备的SnO2:F薄膜的表面电阻

    SnO₂:F薄膜作为重要透明导电氧化物材料,广泛用于太阳能电池、触摸屏等电子器件,其表面电阻特性直接影响器件性能。本研究以射频(RF)溅射技术制备的SnO₂:F
    的头像 发表于 09-29 13:43 527次阅读
    四探针法 | 测量射频(RF)技术制备的SnO2:F<b class='flag-5'>薄膜</b>的表面电阻

    性能、大面积NIR透明钙钛矿电池的制备与优化:基于ALD SnOₓ缓冲层策略结合椭偏光学分析

    研究通过原子层沉积(ALD)技术在低温下制备氧化锡(SnOₓ)薄膜作为缓冲层,以有效阻挡溅射损伤和紫外光影响,采用美能全光谱椭偏仪对薄膜的结
    的头像 发表于 08-29 09:02 573次阅读
    高<b class='flag-5'>性能</b>、大面积NIR透明钙钛矿电池的制备与优化:基于ALD SnOₓ缓冲层策略结合椭偏光学分析

    探究薄膜电容的温度稳定性,适应复杂环境变化

    薄膜电容作为电子电路中不可或缺的被动元件,其性能稳定性直接影响整个系统的可靠性。其中,温度稳定性是衡量薄膜电容质量的关键指标之一,尤其在航空航天、新能源汽车、工业自动化等复杂环境应用中
    的头像 发表于 08-11 17:08 1041次阅读

    半导体外延和薄膜沉积有什么不同

    性36;目的:通过精确控制材料的原子级排列,改善电学性能、减少缺陷,并为高性能器件提供基础结构。例如,硅基集成电路中的应变硅技术可提升电子迁移率4。薄膜沉积核心特
    的头像 发表于 08-11 14:40 1354次阅读
    半导体外延和<b class='flag-5'>薄膜</b><b class='flag-5'>沉积</b>有什么不同

    浅谈半导体薄膜制备方法

    本文简单介绍一下半导体镀膜的相关知识,基础的薄膜制备方法包含热蒸发和溅射法两类。
    的头像 发表于 06-26 14:03 1226次阅读
    浅谈半导体<b class='flag-5'>薄膜</b>制备方法

    详解原子层沉积薄膜制备技术

    CVD 技术是一种在真空环境中通过衬底表面化学反应来进行薄膜生长的过程,较短的工艺时间以及所制备薄膜的高致密性,使 CVD 技术被越来越多地应用于薄膜封装工艺中无机阻挡层的制备。
    的头像 发表于 05-14 10:18 1088次阅读
    详解原子层<b class='flag-5'>沉积</b><b class='flag-5'>薄膜</b>制备技术

    质量流量控制器在薄膜沉积工艺中的应用

    听上去很高大上的“薄膜沉积”到底是什么? 简单来说:薄膜沉积就是帮芯片“贴膜”的。 薄膜沉积(T
    发表于 04-16 14:25 1031次阅读
    质量流量控制器在<b class='flag-5'>薄膜</b><b class='flag-5'>沉积</b>工艺中的应用

    优可测白光干涉仪和薄膜厚度测量仪:如何把控ITO薄膜的“黄金参数”

    ITO薄膜的表面粗糙度与厚度影响着其产品性能与成本控制。优可测亚纳米级检测ITO薄膜黄金参数,帮助厂家优化产品
    的头像 发表于 04-16 12:03 768次阅读
    优可测白光干涉仪和<b class='flag-5'>薄膜</b>厚度测量仪:如何把控<b class='flag-5'>ITO</b><b class='flag-5'>薄膜</b>的“黄金参数”

    磁性靶材磁控溅射成膜影响因素

    本文主要介绍磁性靶材磁控溅射成膜影响因素   磁控溅射作为一种重要的物理气相沉积技术,在薄膜制备领域应用广泛。然而,使用磁性靶材(如镍)时,其特殊的磁性质会对
    的头像 发表于 02-09 09:51 1707次阅读
    磁性靶材磁控<b class='flag-5'>溅射</b>成膜影响因素

    碳化硅薄膜沉积技术介绍

    多晶碳化硅和非晶碳化硅在薄膜沉积方面各具特色。多晶碳化硅以其广泛的衬底适应性、制造优势和多样的沉积技术而著称;而非晶碳化硅则以其极低的沉积温度、良好的化学与机械
    的头像 发表于 02-05 13:49 1798次阅读
    碳化硅<b class='flag-5'>薄膜</b><b class='flag-5'>沉积</b>技术介绍

    半导体薄膜沉积技术的优势和应用

    在半导体制造业这一精密且日新月异的舞台上,每一项技术都是推动行业跃进的关键舞者。其中,原子层沉积(ALD)技术,作为薄膜沉积领域的一颗璀璨明星,正逐步成为半导体工艺中不可或缺的核心要素。本文旨在深度剖析为何半导体制造对ALD技术
    的头像 发表于 01-24 11:17 1708次阅读

    CVD薄膜质量的影响因素及故障排除

    本文介绍了CVD薄膜质量的影响因素及故障排除。 CVD薄膜质量影响因素 以下将以PECVD技术沉积薄膜作为案例,阐述影响薄膜品质的几个核心要
    的头像 发表于 01-20 09:46 3010次阅读
    CVD<b class='flag-5'>薄膜</b>质量的影响因素及故障排除