0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

“融合时代”即将来临?手机内置氮化镓有哪些优势

海明观察 来源:电子发烧友网 作者:李诚 2023-07-12 00:19 次阅读

电子发烧友网报道(文/李诚)氮化镓作为第三代功率半导体,因其宽带隙和高热导率等特点,在电源射频领域有着广泛的应用,近年来也逐渐开始进入消费类市场,成为手机领域中的重要革新材料,为手机的性能提升和创新提供了强有力的支持。

氮化镓在手机端的应用

在过去的几年中,由于成本的限制,氮化镓在消费类市场的应用一直处于探索阶段。然而,随着技术的成熟和整个产业链的不断完善,上游企业频繁扩大产能,使得氮化镓的成本逐渐下降。这一趋势也为氮化镓在消费类市场的应用创造了重要的突破口,同时在氮化镓快充技术的推动下,氮化镓充电器成为了消费者最早接触到的氮化镓产品

随着氮化镓成本的进一步下探和技术的持续创新,如今氮化镓应用已不再局限于手机外设,开始向手机内部转移。

不论是4G还是5G时代,手机续航一直以来都是各大手机厂商攻克的重点。当然,通过增大电池能量密度和容量来提高手机续航是最直观且行之有效的方法,但面对手机内部有限的空间,电池体积不能无休止地增大。因此,手机快充技术得以快速普及。

当其它厂商还在以标配快充充电器解决手机续航问题时,OPPO、Realme、摩托罗拉等手机厂商已经开始从手机内部着手,并将氮化镓芯片成功导入手机内部,推出OPPO Reno 10、Realm GT2大师探索版、摩托罗拉Edge 40三款已经实现量产的机型。

据了解,OPPO、Realme、摩托罗拉三家手机厂商在手机端应用的氮化镓芯片,均来自国内芯片厂商英诺赛科。其中,摩托罗拉Edge 40和OPPO Reno 10采用的是内置VGaN的40V低压氮化镓芯片INN040W048A。Realm GT2大师探索版采用的是英诺赛科Bi-GaN系列芯片INN40W08。

从官方提供的资料显示,这些氮化镓芯片的导入主要是用于替代传统的硅基MOS,利用氮化镓MOS开关频率高、低导通阻抗的特性,降低手机在充、放电过程中的导通损耗,减少热量堆积,以顺应大功率快充技术在手机端应用的发展,变相提高手机快充的峰值充电维持时间,增强手机续航。

以上是目前实现量产的手机端氮化镓应用,从氮化镓的高击穿电场、高饱和速度特性来看,氮化镓可作为手机射频器件的理想材料。使用氮化镓材料制造的射频器件能够提供更高的工作频率、更低的噪声和更好的线性度,从而显著提升手机的通信和数据传输性能。

砷化镓为何未能取代氮化镓

相比常用的砷化镓,在射频领域中,氮化镓具有更高的瞬时带宽,这也意味着能够以更少的器件数量实现全波段和频道的覆盖。随着通讯频段向高频的不断迁移,基站和通信设备需要更高性能的放大器作为支持,氮化镓器件相比金属氧化物半导体和砷化镓的优势也会更为明显。

然而,目前主流的氮化镓射频器件通常采用价格较高的碳化硅材料作为衬底。虽然碳化硅具有高导热性和氮化镓在高频段下的大功率射频输出优势,能够更好地满足5G应用需求,但随着手机从4G向5G频段的转变,射频功率放大器的数量也在增加。

受制于氮化镓射频器件的成本影响,目前大多数手机仍选择采用砷化镓作为原材料,以实现成本与性能之间的平衡。这也是为什么氮化镓在手机射频领域尚未普及的原因之一。当然,随着技术的发展和成本的下降,氮化镓射频器件在手机领域应用的前景仍然值得期待。

结语

基于氮化镓卓越的电气特性,除了在充电和射频方面应用外,氮化镓还具有广泛的应用潜力,例如功率放大器、芯片设计、显示技术等领域。利用氮化镓的优势,手机制造商能够开发出更高效、稳定的电源系统,从而实现更持久的续航表现。

此外,氮化镓材料的高热导率和优异的功率处理能力,也为手机功率器件的设计提供了新的可能,使得手机可以实现更低功耗、更高效率的能量转换。

随着氮化镓技术的不断发展与成熟,相信不久的未来将会看到氮化镓在手机行业的广泛应用。将氮化镓融入手机将成为推动整个手机产业向前迈进的重要动力。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 氮化镓
    +关注

    关注

    53

    文章

    1502

    浏览量

    114890
收藏 人收藏

    评论

    相关推荐

    #氮化 #英飞凌 8.3亿美元!英飞凌完成收购氮化系统公司 (GaN Systems)

    半导体氮化
    深圳市浮思特科技有限公司
    发布于 :2023年10月25日 16:11:22

    氮化芯片未来会取代硅芯片吗?

    2000 年代初就已开始,但 GaN 晶体管仍处于起步阶段。 毫无疑问,它们将在未来十年内取代功率应用中的硅晶体管,但距离用于数据处理应用还很远。 Keep Tops氮化什么好处? 氮化
    发表于 08-21 17:06

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    。 最早采用基于氮化的FET和集成电路的设计人员,就是发挥比MOSFET快10倍开关速度和比IGBT快100倍开关速度的氮化器件优势的设
    发表于 06-25 14:17

    纳微集成氮化电源解决方案和应用

    纳微集成氮化电源解决方案及应用
    发表于 06-19 11:10

    GaN功率半导体(氮化)的系统集成优势介绍

    GaN功率半导体(氮化)的系统集成优势
    发表于 06-19 09:28

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一种易于使用的“数字输入、电源输出” (digital in, po
    发表于 06-15 16:03

    为什么氮化比硅更好?

    ,在半桥拓扑结构中结合了频率、密度和效率优势。如有源钳位反激式、图腾柱PFC和LLC。随着从硬开关拓扑结构到软开关拓扑结构的改变,初级FET的一般损耗方程可以最小化,从而提升至10倍的高频率。 氮化功率芯片前所未有的性能表现,
    发表于 06-15 15:53

    氮化: 历史与未来

    200℃。 1972年,基于氮化材质的 LED 发光二极管才被发明出来(使用掺镁的氮化),。这是里程碑式的历史事件。虽然最初的
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    极限。而上限更高的氮化,可以将充电效率、开关速度、产品尺寸和耐热性的优势有机统一,自然更受青睐。 随着全球能量需求的不断增加,采用氮化
    发表于 06-15 15:47

    什么是氮化(GaN)?

    具有更小的晶体管、更短的电流路径、超低的电阻和电容等优势氮化充电器的充电器件运行速度,比传统硅器件要快 100倍。 更重要的是,氮化
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成
    发表于 06-15 15:35

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集成设计使其非常
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    虽然低电压氮化功率芯片的学术研究,始于 2009 年左右的香港科技大学,但强大的高压氮化功率芯片平台的量产,则是由成立于 2014 年的纳微半导体最早进行研发的。纳微半导体的三位联
    发表于 06-15 15:28

    什么是氮化功率芯片?

    氮化(GaN)功率芯片,将多种电力电子器件整合到一个氮化芯片上,能有效提高产品充电速度、效率、可靠性和成本效益。在很多案例中,氮化
    发表于 06-15 14:17