0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA系统中三种方式减少亚稳态的产生

FPGA设计论坛 来源:未知 2023-06-03 07:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


点击上方蓝字关注我们


1.1 亚稳态发生原因

FPGA系统中,如果数据传输中不满足触发器的Tsu和Th不满足,或者复位过程中复位信号的释放相对于有效时钟沿的恢复时间(recoveryTIme)不满足,就可能产生亚稳态,此时触发器输出端Q在有效时钟沿之后比较长的一段时间处于不确定的状态,在这段时间里Q端在0和1之间处于振荡状态,而不是等于数据输入端D的值。这段时间称为决断时间(resoluTIon TIme)。经过resoluTIon time之后Q端将稳定到0或1上,但是稳定到0或者1,是随机的,与输入没有必然的关系。

1.2 亚稳态发生场合

只要系统中有异步元件,亚稳态就是无法避免的,亚稳态主要发生在异步信号检测、跨时钟域信号传输以及复位电路等常用设计中。

1.3 亚稳态危害

由于产生亚稳态后,寄存器Q端输出在稳定下来之前可能是毛刺、振荡、固定的某一电压值。在信号传输中产生亚稳态就会导致与其相连其他数字部件将其作出不同的判断,有的判断到“1”有的判断到“0”,有的也进入了亚稳态,数字部件就会逻辑混乱。在复位电路中产生亚稳态可能会导致复位失败。怎么降低亚稳态发生的概率成了FPGA设计需要重视的一个注意事项。

2. 理论分析

2.1 信号传输中的亚稳态

在同步系统中,输入信号总是系统时钟同步,能够达到寄存器的时序要求,所以亚稳态不会发生。亚稳态问题通常发生在一些跨时钟域信号传输以及异步信号采集上。

它们发生的原因如下:

(1)在跨时钟域信号传输时,由于源寄存器时钟和目的寄存器时钟相移未知,所以源寄存器数据发出数据,数据可能在任何时间到达异步时钟域的目的寄存器,所以无法保证满足目的寄存器Tsu和Th的要求;

(2)在异步信号采集中,由于异步信号可以在任意时间点到达目的寄存器,所以也无法保证满足目的寄存器Tsu和Th的要求;

当数据在目的寄存器Tsu-Th时间窗口发生变化,也即当数据的建立时间或者保持时间不满足时,就可能发生亚稳态现象。如图3.1所示。

图3.1 亚稳态产生示意图

由图可知,当产生亚稳态后Tco时间后会有Tmet(决断时间)的振荡时间段,当振荡结束回到稳定状态时为“0”或者“1”,这个是随机的。因此,会对后续电路判断造成影响。

2.2 复位电路的亚稳态

2.2.1 异步复位电路

在复位电路设计中,复位信号基本都是异步的,常用异步复位电路Verilog描述如下:

always @(posedge clk or negedge rst_n)

begin

if(!rst_n) a 《= 1’b0;

else a 《= b;

end

综合出来复位电路模型如图3.2所示:

图3.2 异步复位电路模型

如图3.3所示,为复位电路复位时序图。如果异步复位信号的撤销时间在Trecovery(恢复时间)和Tremoval(移除时间)之内,那势必造成亚稳态的产生,输出在时钟边沿的Tco后会产生振荡,振荡时间为Tmet(决断时间),终稳定到“0”或者“1”,就会可能造成复位失败。

图3.3 异步复位时序

2.2.2 同步复位电路的亚稳态

在复位电路中,由于复位信号是异步的,因此,有些设计采用同步复位电路进行复位,并且绝大多数资料对于同步复位电路都认为不会发生亚稳态,其实不然,同步电路也会发生亚稳态,只是几率小于异步复位电路。

如下面verilog代码对同步复位电路的描述。

always @(posedge clk)

begin

if(!rst_n) a 《= 1’b0;

else a 《= b;

end

综合出硬件电路如图3.4所示。

图3.4 同步复位电路

在此,我们不讨论同步复位的消耗资源问题,只讨论同步复位的亚稳态产生情况。

当输入端Din为高电平,而且复位信号的撤销时间在clk的Tsu和Th内时候,亚稳态就随之产生了。如图3.5时序所示,当复位撤销时间在clk的Tsu和Th内,输入数据为“1”,通过和输入数据相与后的数据也在clk的Tsu和Th内,因此,势必会造成类似异步信号采集的亚稳态情况。

图3.5 同步复位电路时序图

2.3 亚稳态产生概率以及串扰概率

在实际的FPGA电路设计中,常常人们想的是怎么减少亚稳态对系统的影响,很少有人考虑怎么才能减少亚稳态发生几率,以及亚稳态串扰的概率问题。

2.3.1 亚稳态发生概率

由上面分析得知,系统亚稳态发生的都是由于clk的Tsu和Th不满足,又或者是复位信号的移除和恢复时间不满足。常用FPGA器件的Tsu+Th约等于1ns,复位移除和恢复时间相加约等于1ns。

当异步信号不是一组数据,或者信号量较少,那就需要对异步信号进行同步处理,例如对一个异步脉冲信号进行采集,只要脉冲信号变化发生在时钟Tsu和Th窗口内,那就很可能会产生亚稳态,亚稳态产生的概率大概为:

概率 = (建立时间 + 保持时间)/ 采集时钟周期 (公式3-1)

由公式3-1可以看出,随着clk频率的增加,亚稳态发生的几率是增加的。

例如,为系统采用100M时钟对一个外部信号进行采集,采集时钟周期为10ns,那采集产生亚稳态的概率为:1ns/10ns = 10%

同理采用300M时钟对一个外部信号进行采集,那产生亚稳态的概率为:1ns/3.3ns = 30%

如果采用三相相位差为120°的时钟对一个外部信号进行采集,那产生亚稳态的概率接近90%

所以在异步信号采集过程中,要想减少亚稳态发生的概率:

(1) 降低系统工作时钟,增大系统周期,亚稳态概率就会减小;

(2) 采用工艺更好的FPGA,也就是Tsu和Th时间较小的FPGA器件;

2.3.2 亚稳态的串扰概率

使用异步信号进行使用的时候,好的设计都会对异步信号进行同步处理,同步一般采用多级D触发器级联处理,如图3.6所示,采用三级D触发器对异步信号进行同步处理。

图3.6 三级寄存器同步

这种模型大部分资料都说的是级寄存器产生亚稳态后,第二级寄存器稳定输出概率为90%,第三极寄存器稳定输出的概率为99%,如果亚稳态跟随电路一直传递下去,那就会另自我修护能力较弱的系统直接崩溃。接下来我们分析这种串扰的概率问题。

如图3.7所示为一个正常级寄存器发生了亚稳态,第二级、第三极寄存器消除亚稳态时序模型。

图3.7 三级寄存器消除亚稳态

由上图可以看出,当个寄存器发生亚稳态后,经过Tmet的振荡稳定后,第二级寄存器能采集到一个稳定的值。但是为什么第二级寄存器还是可能会产生亚稳态呢?

由于振荡时间Tmet是受到很多因素影响的,所以Tmet时间又长有短,所以当Tmet时间长到大于一个采集周期后,那第二级寄存器就会采集到亚稳态。如图3.8所示。

图3.8 二级寄存器亚稳态

由上图可知,第二级也是一个亚稳态,所以在这种情况下,亚稳态产生了串扰,从级寄存器传到了第二级寄存器,同样也可能从第二级寄存器串扰到第三级寄存器。这样会让设计逻辑判断出错,产生亚稳态传输,可能导致系统死机奔溃。

2.3.3 亚稳态振荡时间Tmet

亚稳态震荡时间Tmet关系到后级寄存器的采集稳定问题,Tmet影响因素包括:器件的生产工艺、温度、环境以及寄存器采集到亚稳态离稳定态的时刻等。甚至某些特定条件,如干扰、辐射等都会造成Tmet增长。

3. 应用分析

有亚稳态产生,我们就要对亚稳态进行消除,常用对亚稳态消除有三种方式:

(1) 对异步信号进行同步处理;

(2) 采用FIFO对跨时钟域数据通信进行缓冲设计;

(3) 对复位电路采用异步复位、同步释放方式处理。

3.1.1 对异步信号进行同步提取边沿

在异步通信或者跨时钟域通信过程中,常用的就是对异步信号进行同步提取边沿处理。对一个异步信号进行提取上升沿通常采用程序清单 4.1所示。

程序清单 4.1 双极寄存器提取边沿

input sig_nsyn;

wire sig_nsyn_p;

reg[1:0] sig_nsyn_r;

always @(posedge clk or negedge rst_n)

begin

if(!rst_n) sig_nsyn_r 《= 2’d0;

else sig_nsyn_r 《= { sig_nsyn_r [0], sig_nsyn };

end

assign sig_nsyn_p = sig_nsyn_r[0] & ~sig_nsyn_r[1];

这种边沿提取方式对于一个稳定的系统是不合适的,例如:当级寄存器采集到亚稳态,那势必造成sig_nsyn_p输出亚稳态,这样就会对采用sig_nsyn_p的信号进行判断的电路造成影响,甚至判断出错误的值。

根据3.3.1小节的亚稳态产生概率,如果在100M时种下那级寄存器产生亚稳态的概率约为10%,随着系统采集频率升高,那产生亚稳态的概率也会随之上升。因此,在进行异步信号跨频提取边沿时候,一般采用多进行寄存器消除亚稳态,可能在系统稳定性要求高的情况下,采用更多级寄存器来消除亚稳态,如程序清单 4.2所示,即为采用4级寄存器消除亚稳态,相应的边沿信号产生的时间就晚了两个时钟周期。

程序清单 4.2 多级寄存器提取边沿信号

input sig_nsyn;

wire sig_nsyn_p;

reg[3:0] sig_nsyn_r;

always @(posedge clk or negedge rst_n)

begin

if(!rst_n) sig_nsyn_r 《= 2’d0;

else sig_nsyn_r 《= { sig_nsyn_r [2::0], sig_nsyn };

end

assign sig_nsyn_p = sig_nsyn_r[2] & ~sig_nsyn_r[3];

3.1.2 FIFO进行异步跨频数据处理

当数据流从一个时钟域到另一个时钟域的时候,绝大多数情况下都采用FIFO来作为中间缓冲,采用双时钟对数据缓冲,就可以避免亚稳态的发生。

3.1.3 异步复位,同步释放

对于复位情况下的亚稳态,常常是由于恢复时间和移除时钟不满足造成的,因此,常用的处理方式是采用异步复位、同步释放。常用电路模型如所示。采用第二级寄存器输出作为全局复位信号输出。

程序清单 4.3 异步复位处理

wire sys_rst_n;

reg [1:0] rst_r;

always @(posedge clk or negedge rst_n)

begin

if(!rst_n) rst_r 《= 2’d0;

else rst_r 《= {rst_r[0], 1’b1};

end

assign sys_rst_n = rst_r[1];

通过上面三种方式处理异步信号、异步数据、以及异步复位可有效的提高系统的稳定性。减少亚稳态的产生。






有你想看的精彩




至芯科技-FPGA就业培训来袭!你的选择开启你的高薪之路!5月30号西安中心开课、欢迎咨询!
采用FPGA和CMOS数字传感器实现图像监测系统的设计
使用外部 PLL 改善 FPGA 通信接口时钟抖动





扫码加微信邀请您加入FPGA学习交流群




欢迎加入至芯科技FPGA微信学习交流群,这里有一群优秀的FPGA工程师、学生、老师、这里FPGA技术交流学习氛围浓厚、相互分享、相互帮助、叫上小伙伴一起加入吧!


点个在看你最好看






原文标题:FPGA系统中三种方式减少亚稳态的产生

文章出处:【微信公众号:FPGA设计论坛】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1656

    文章

    22304

    浏览量

    630771

原文标题:FPGA系统中三种方式减少亚稳态的产生

文章出处:【微信号:gh_9d70b445f494,微信公众号:FPGA设计论坛】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    伺服电机的三种制动方式有什么区别?

    伺服电机作为自动化控制系统中执行元件的核心部件,其制动性能直接影响设备的定位精度和安全可靠性。目前主流的伺服电机制动方式包括动态制动、再生制动和电磁机械制动三种,它们在制动原理、应用场景及技术特点上
    的头像 发表于 09-19 18:26 1184次阅读
    伺服电机的<b class='flag-5'>三种</b>制动<b class='flag-5'>方式</b>有什么区别?

    MEMS中的三种测温方式

    在集成MEMS芯片的环境温度测量领域,热阻、热电堆和PN结原理是三种主流技术。热阻是利用热敏电阻,如金属铂或注入硅的温度电阻系数恒定,即电阻随温度线性变化的特性测温,电阻变化直接对应绝对温度,需恒流源供电。
    的头像 发表于 07-16 13:58 1335次阅读
    MEMS中的<b class='flag-5'>三种</b>测温<b class='flag-5'>方式</b>

    1553B总线常见三种组网方式

    1553B总线作为航空电子系统中的关键通信协议,其组网方式直接影响系统的可靠性和实时性。本文将深入解析1553B总线的三种典型组网结构:单总线结构、双冗余总线和多总线分层架构,并结合实
    的头像 发表于 06-21 17:39 1363次阅读
    1553B总线常见<b class='flag-5'>三种</b>组网<b class='flag-5'>方式</b>

    开关电源三种控制模式:PWM/PFM/PSM

    摘要 本文详细介绍了开关电源的三种主要调制方式:PWM(脉冲宽度调制)、PFM(脉冲频率调制)和PSM(脉冲跨周期调制)。PWM通过调整脉冲宽度保持恒定频率,适用于重负载,但轻负载效率低。PFM则在
    发表于 06-09 16:11

    HarmonyOS基础组件:Button三种类型的使用

    中的Button相较于Android原生来说,功能比较丰富,扩展性高,减少了开发者的代码数量,简化了使用方式。不仅可以自定义圆角还支持三种样式。 常用属性 名称 参数类型 描述 type
    的头像 发表于 06-09 15:48 2176次阅读
    HarmonyOS基础组件:Button<b class='flag-5'>三种</b>类型的使用

    介绍三种常见的MySQL高可用方案

    在生产环境中,为了确保数据库系统的连续可用性、降低故障恢复时间以及实现业务的无缝切换,高可用(High Availability, HA)方案至关重要。本文将详细介绍三种常见的 MySQL 高可用
    的头像 发表于 05-28 17:16 1023次阅读

    信号隔离器三种供电方式的区别

    信号隔离器是一重要的信号隔离装置,其供电方式主要有独立供电、回路供电和输出回路供电三种。以下是这三种供电方式的详细区别: 一、独立供电 1
    的头像 发表于 04-17 16:23 1116次阅读
    信号隔离器<b class='flag-5'>三种</b>供电<b class='flag-5'>方式</b>的区别

    redis三种集群方案详解

    在Redis中提供的集群方案总共有三种(一般一个redis节点不超过10G内存)。
    的头像 发表于 03-31 10:46 1298次阅读
    redis<b class='flag-5'>三种</b>集群方案详解

    CMOS,Bipolar,FET这三种工艺的优缺点是什么?

    在我用photodiode工具选型I/V放大电路的时候,系统给我推荐了AD8655用于I/V,此芯片为CMOS工艺 但是查阅资料很多都是用FET工艺的芯片,所以请教下用于光电信号放大转换(主要考虑信噪比和带宽)一般我们用哪种工艺的芯片, CMOS,Bipolar,FET这三种
    发表于 03-25 06:23

    GaN、超级SI、SiC这三种MOS器件的用途区别

    如果想要说明白GaN、超级SI、SiC这三种MOS器件的用途区别,首先要做的是搞清楚这三种功率器件的特性,然后再根据材料特性分析具体应用。
    的头像 发表于 03-14 18:05 2245次阅读

    FOC中的三种电流采样方式,你真的会选择吗?(可下载)

    的基础,用一句话来形容就是“基础不对,努力白费”,由此可见电流采样在整 个 FOC 算法中的作用电流采样的方式一般分为电阻、双电阻、单电阻,这三种采样方式都有其
    发表于 03-12 15:04 3次下载

    三种太赫兹波的产生方式

    本文简单介绍了三种太赫兹波的产生方式。 太赫兹波(THz)是一电磁波,在电磁波谱上位于红外与微波之间。太赫兹光子能量在1-10 meV范围之间,在光谱分析、医疗成像、移动通信方面都有
    的头像 发表于 02-17 09:09 3587次阅读
    <b class='flag-5'>三种</b>太赫兹波的<b class='flag-5'>产生</b><b class='flag-5'>方式</b>

    光伏系统三种类型及其应用分析

    ,即使在夜间或阴天也能持续供电,常用于离网或偏远地区的设置。第三种系统为交流电(AC)负载供电,使用逆变器将直流电转化为交流电,使其可以与住宅和商业电器兼容。仅日间
    的头像 发表于 01-20 11:40 2001次阅读
    光伏<b class='flag-5'>系统</b>的<b class='flag-5'>三种</b>类型及其应用分析

    FPGA频率测量的三种方法

    1、FPGA频率测量? 频率测量在电子设计和测量领域中经常用到,因此对频率测量方法的研究在实际工程应用中具有重要意义。 通常的频率测量方法有三种:直接测量法,间接测量法,等精度测量法。 2、直接
    的头像 发表于 01-09 09:37 1194次阅读
    <b class='flag-5'>FPGA</b>频率测量的<b class='flag-5'>三种</b>方法

    示波器的三种触发模式

    示波器的触发方式不仅影响波形捕捉的时机,还决定了显示的波形是否稳定。 常见的触发模式有三种: 单次触发 (Single)、 正常触发 (Normal)和 自动触发 (Auto)。下面将对这三种触发
    的头像 发表于 01-07 11:04 1.3w次阅读
    示波器的<b class='flag-5'>三种</b>触发模式