0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

摩尔定律走到尽头,碳基芯片登上舞台

21克888 来源:电子发烧友网 作者:Norris 2020-09-10 09:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


芯片一直是国内科技业界关心我的热门话题之一,尤其是华为最近在芯片禁令上受到的困扰,让人们更深刻的意识到,芯片技术自主可控的重要性。近日,关于“碳基芯片”的消息在业内流传,据悉,碳基集成电路技术被认为是最有可能取代硅基集成电路的未来信息技术之一。

一、什么是“碳基芯片”

20世纪五、六十年代,集成电路发展开始提速,这是通过氧化、光刻、扩散、外延、蒸铝等半导体制造工艺,把构成具有一定功能的电路所需的晶体管电阻电容等元件及它们之间的连接导线全部集成在一小块硅片上,然后焊接封装在一个管壳内。以单晶硅为主的半导体集成电路,已经变得无处不在,成为整个信息技术的强大支柱。

进入21世纪以来,人们为了提高芯片性能,一直按照“集成电路上可容纳的晶体管数量大约每隔18个月便会翻一番,性能也将提升一倍”的规律提高单个芯片上晶体管的数量。但芯片尺寸越小,相关工艺难度也越高,尤其是在进入纳米级别后,来自材料、技术、 器件和系统方面的物理限制,让传统硅基芯片的发展速度开始减慢。

因此,人们开始寻找新的方向、新的材料来替代硅基芯片,而采用碳纳米晶体管就成为了两种比较可行的方案之一。为什么选择碳元素,这与其本身很多优质的特性有关。

资料显示,用碳纳米管做的晶体管,电子迁移率可达到硅晶体管的1000倍,也就是说碳材料里面电子的群众基础更好;其次,碳纳米管中的电子自由程特别长,即电子的活动更自由,不容易摩擦发热。

理论上来说,碳晶体管的极限运行速度是硅晶体管的5-10倍,而功耗方面,却只是后者的十分之一。也就说,在更加宽松的工艺条件下,碳晶体管就能取得与硅晶体管同等水平的性能,这也是所谓“碳基芯片”出现的原因。

二、我国碳基芯片的研究与发展

1997年,北京大学成立全国第一个纳米科技研究机构:北京大学纳米科学与技术研究中心。2002年,清华大学吴德海教授团队和美国伦斯勒理工学院P.M.Ajayan教授合作,首次制备出利用浮动化学气相沉积方法制备直径约为300至500微米的碳纳米管束。

同年,清华大学范守善教授团队报道了从碳纳米管阵列拉丝制备碳纳米管纤维的方法。除了这些成就,据2014年数据,我国有超过1000家高校和科研所从事碳纳米材料研究活动,在碳纳米材料的研究方面不断创新。

中国碳基纳电子器件代表研究机构有中科院、北京大学、清华大学等。今年5月份,有消息报道称,北京大学电子系教授彭练矛带领团队采用了全新的组装和提纯方法,制造出高纯半导体阵列的碳纳米管材料,制造出芯片的核心元器件——晶体管,其工作速度3倍于英特尔最先进的14纳米商用硅材料晶体管,能耗只有其四分之一。该成果于今年初刊登于美国《科学》杂志。

使用该方法制备的碳纳米管纯度可达到99.9999%,阵列密度达到120/微米。通过这一技术,研究人员有望将集成电路技术推进到3nm节点以下!

▲北大团队研发的晶圆级高质量碳管阵列薄膜



此外,中国科学院金属研究所的研究人员在纳米碳基材料高效催化一级醇转化研究中获得进展。他们发现调控纳米碳催化材料的氧化还原能力,可控制一级醇反应方向,实现对目标产物选择性的调控。

利用可再生的生物质资源制备精细化工产品或能源材料有助于解决现代社会能源枯竭、污染严重的问题。将生物质原料衍生的一级醇类化合物(甲醇、乙醇和丁醇等)高值转化为化学品的新方法和新体系,成为化学、化工和材料领域的热点研究方向之一。

研究人员将碳材料应用于丁醇转化反应体系中,发现其本征氧化还原能力取决于碳材料共轭尺寸的大小及杂原子的引入。合理调控纳米碳催化材料的化学组成和结构,即其氧化还原能力,可控制一级醇反应进行方向,实现对目标产物选择性的有效调控。

他们以碳材料催化构效关系研究为基础,设计制备出一种新型石墨烯/氮化硼(BCN)纳米复合催化材料。该材料的特点是石墨烯和氮化硼域共存在同一结构中,二组分在纳米尺度的杂化能够提高复合材料在氧气环境下的热稳定性,且二者间的协同作用赋予复合材料更高的催化反应活性和目标产物选择性。实验结合理论计算结果给出复合材料催化甲醇转化过程的反应路径,实现分子(原子)尺度上对反应过程的本质认识。

三、碳基半导体

随着这些年碳纳米管及纳米材料研究的深入,相关工艺日趋成熟,实验室中也成功地制造出碳晶体管,但是想要把这些单独的碳晶体管大规模的组合连接在一起形成一块完整的芯片,还是一件很困难的事情。

目前科学家们已经通过化学方法,把单个的碳纳米管放置在硅晶片上想要放的特殊沟道里,但相比于芯片中能放置上千万个硅晶体管的数量,科学家们最多只能同时放置几百个碳纳米管,远远无法投入商业化。其次,要想把碳晶体管排布在晶圆片上,需要更加精准的刻蚀技术。

有不少人认为,碳纳米管技术会在接下里的十年里准备就绪,成为取代硅材料之后的芯片材料,届时“碳基芯片”也将会成为未来的主流芯片。事实上碳晶体管没法量产,最大的原因在于,碳元素太活泼了而且介电常数又低。此外,技术障碍只是一方面,成本及成品率的问题同样难以克服。

早在去年9月,美国MIT团队就开发出了第一个碳纳米管芯片RV16XNano,并执行了一段程序输出:“hallo world!” 当然,尽管碳纳米管场效应晶体管(CNFET)比硅场效应晶体管更节能,但它们目前仍大多存在于实验室当中。

据悉,这个碳纳米管芯片内部拥有14000个晶体管,具备16位寻址能力,采用RISC-V指令集,但其相比当前的芯片来看,性能并不突出。其芯片频率仅1MHz,大约是30年前的水平。

硅晶体管尺寸的不断缩小,推动着电子技术的进步。当摩尔定律走到尽头,硅晶体管缩小变得越来越困难。以半导体碳纳米管为基础的晶体管,作为先进微电子器件中硅晶体管的替代品,与金属氧化物半导体场效应管(MOSFET)类似,它成为构建下一代计算机的基本单元。

本文由电子发烧友综合报道,内容参考自东方财富网、IT之家,转载请注明以上来源。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    462

    文章

    53581

    浏览量

    459535
  • 碳基半导体
    +关注

    关注

    1

    文章

    8

    浏览量

    8675
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    Chiplet,改变了芯片

    1965年,英特尔联合创始人戈登·摩尔提出了“摩尔定律”。半个多世纪以来,这一定律推动了集成电路(IC)性能的提升和成本的降低,并成为现代数字技术的基础。摩尔定律指出,半导体
    的头像 发表于 10-17 08:33 2931次阅读
    Chiplet,改变了<b class='flag-5'>芯片</b>

    CMOS 2.0与Chiplet两种创新技术的区别

    摩尔定律正在减速。过去我们靠不断缩小晶体管尺寸提升芯片性能,但如今物理极限越来越近。在这样的背景下,两种创新技术站上舞台:CMOS 2.0 和 Chiplet(芯粒)。它们都在解决 “如何让
    的头像 发表于 09-09 15:42 730次阅读

    芯片封装的功能、等级以及分类

    摩尔定律趋近物理极限、功率器件制程仍停留在百纳米节点的背景下,芯片“尺寸缩小”与“性能提升”之间的矛盾愈发尖锐。
    的头像 发表于 08-28 13:50 1663次阅读

    摩尔定律 “踩刹车” ,三星 、AP、普迪飞共话半导体制造新变革新机遇

    ,揭示行业正处于从“晶体管密度驱动”向“系统级创新”转型的关键节点。随着摩尔定律放缓、供应链分散化政策推进,一场融合制造技术革新与供应链数字化的产业变革正在上演。
    的头像 发表于 08-19 13:48 1080次阅读
    当<b class='flag-5'>摩尔定律</b> “踩刹车” ,三星 、AP、普迪飞共话半导体制造新变革新机遇

    AI狂飙, FPGA会掉队吗? (上)

    ,这与摩尔定律的速度高度相似,而通用GPU的算力增长更是惊人,达到了八年1000倍。「GPU算力八年1000倍增长」过去我做FAE的时候,客户经常会问,“你们芯片
    的头像 发表于 08-07 09:03 973次阅读
    AI狂飙, FPGA会掉队吗? (上)

    Chiplet与3D封装技术:后摩尔时代的芯片革命与屹立芯创的良率保障

    摩尔定律逐渐放缓的背景下,Chiplet(小芯片)技术和3D封装成为半导体行业突破性能与集成度瓶颈的关键路径。然而,随着芯片集成度的提高,气泡缺陷成为影响封装良率的核心挑战之一。
    的头像 发表于 07-29 14:49 766次阅读
    Chiplet与3D封装技术:后<b class='flag-5'>摩尔</b>时代的<b class='flag-5'>芯片</b>革命与屹立芯创的良率保障

    晶心科技:摩尔定律放缓,RISC-V在高性能计算的重要性突显

    运算还是快速高频处理计算数据,或是超级电脑,只要设计或计算系统符合三项之一即可称之为HPC。 摩尔定律走过数十年,从1970年代开始,世界领导厂商建立晶圆厂、提供制程工艺,在28nm之前取得非常大的成功。然而28nm之后摩尔定律在接近物理极限之前遇到大量的困
    的头像 发表于 07-18 11:13 4035次阅读
    晶心科技:<b class='flag-5'>摩尔定律</b>放缓,RISC-V在高性能计算的重要性突显

    跨越摩尔定律,新思科技掩膜方案凭何改写3nm以下芯片游戏规则

    。 然而,随着摩尔定律逼近物理极限,传统掩模设计方法面临巨大挑战,以2nm制程为例,掩膜版上的每个图形特征尺寸仅为头发丝直径的五万分之一,任何微小误差都可能导致芯片失效。对此,新思科技(Synopsys)推出制造解决方案,尤其是
    的头像 发表于 05-16 09:36 5465次阅读
    跨越<b class='flag-5'>摩尔定律</b>,新思科技掩膜方案凭何改写3nm以下<b class='flag-5'>芯片</b>游戏规则

    电力电子中的“摩尔定律”(1)

    本文是第二届电力电子科普征文大赛的获奖作品,来自上海科技大学刘赜源的投稿。著名的摩尔定律中指出,集成电路每过一定时间就会性能翻倍,成本减半。那么电力电子当中是否也存在着摩尔定律呢?1965年,英特尔
    的头像 发表于 05-10 08:32 692次阅读
    电力电子中的“<b class='flag-5'>摩尔定律</b>”(1)

    玻璃基板在芯片封装中的应用

    自集成电路诞生以来,摩尔定律一直是其发展的核心驱动力。根据摩尔定律,集成电路单位面积上的晶体管数量每18到24个月翻一番,性能也随之提升。然而,随着晶体管尺寸的不断缩小,制造工艺的复杂度和成本急剧
    的头像 发表于 04-23 11:53 2478次阅读
    玻璃基板在<b class='flag-5'>芯片</b>封装中的应用

    瑞沃微先进封装:突破摩尔定律枷锁,助力半导体新飞跃

    在半导体行业的发展历程中,技术创新始终是推动行业前进的核心动力。深圳瑞沃微半导体凭借其先进封装技术,用强大的实力和创新理念,立志将半导体行业迈向新的高度。 回溯半导体行业的发展轨迹,摩尔定律无疑是一个重要的里程碑
    的头像 发表于 03-17 11:33 719次阅读
    瑞沃微先进封装:突破<b class='flag-5'>摩尔定律</b>枷锁,助力半导体新飞跃

    混合键合中的铜连接:或成摩尔定律救星

    混合键合3D芯片技术将拯救摩尔定律。 为了继续缩小电路尺寸,芯片制造商正在争夺每一纳米的空间。但在未来5年里,一项涉及几百乃至几千纳米的更大尺度的技术可能同样重要。 这项技术被称为“混合键合”,可以
    的头像 发表于 02-09 09:21 1139次阅读
    混合键合中的铜连接:或成<b class='flag-5'>摩尔定律</b>救星

    石墨烯互连技术:延续摩尔定律的新希望

    半导体行业长期秉持的摩尔定律(该定律规定芯片上的晶体管密度大约每两年应翻一番)越来越难以维持。缩小晶体管及其间互连的能力正遭遇一些基本的物理限制。特别是,当铜互连按比例缩小时,其电阻率急剧上升,这会
    的头像 发表于 01-09 11:34 883次阅读

    摩尔定律是什么 影响了我们哪些方面

    摩尔定律是由英特尔公司创始人戈登·摩尔提出的,它揭示了集成电路上可容纳的晶体管数量大约每18-24个月增加一倍的趋势。该定律不仅推动了计算机硬件的快速发展,也对多个领域产生了深远影响。
    的头像 发表于 01-07 18:31 2959次阅读