0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

标签 > gan

gan

厂商产品 +关注21人关注

文章:2045 浏览:79278 帖子:160

gan技术

氮化镓晶体管的结构及优缺点

氮化镓晶体管的结构及优缺点

  氮化镓晶体管和碳化硅MOSFET是近两三年来新兴的功率半导体,相比于传统的硅材料功率半导体,他们都具有许多非常优异的特性:耐压高,导通电阻小,寄生参...

2023-02-09 标签:MOSFET晶体管氮化镓 7.5k 0

GaN FET:提供AEC-Q101级耐用性

GaN FET:提供AEC-Q101级耐用性

功率GaN技术已证明可为电源转换带来出色的效率。但对于汽车应用这样的市场,解决方案还需要出色的耐用性,才能确保高质量和可靠性。我们必须证明,Nexper...

2023-02-09 标签:电源服务器GaN 764 0

功率GaN:高效功率转换的需求

功率GaN:高效功率转换的需求

随着社会压力不断增大,越来越多的立法要求减少二氧化碳的排放。这一趋势推动汽车、电信等行业加大投资,以提高电源转换效率和电气化水平。功率氮化镓(GaN)技...

2023-02-09 标签:电动汽车逆变器GaN 723 0

Gan FET:为何选择共源共栅

Gan FET:为何选择共源共栅

在过去几年里,GaN技术,特别是硅基GaN HEMT技术,已成为电源工程师的关注重点。该技术承诺提供许多应用所需的大功率高性能和高频开关能力。然而,随着...

2023-02-09 标签:驱动器晶体管GaN 1k 0

CCPAK - GaN FET顶部散热方案

CCPAK - GaN FET顶部散热方案

长期以来,在功率应用方案中,热管理一直是挑战。当项目有空间放置大型的散热器时,从电路板和半导体器件上将废热导出较为容易。然而,随着输出功率提升以及功率密...

2023-02-09 标签:半导体散热器GaN 871 0

氮化镓晶体管应用领域

基于GaN的转换器在所有情况下都具有更高的效率和更低的工作温度,最高效率为 96.8%,最低 94.5%。此外,随着开关频率和死区时间的增加,基于硅的转...

2023-02-08 标签:转换器氮化镓GaN 801 0

GaN为提高PV逆变器效率带来曙光

GaN为提高PV逆变器效率带来曙光

在使用太阳能作为可再生能源方面,我们面临着两大主要挑战 – 效率和成本。虽然在过去数年内有了显着改进,但在将阳光转换为电能时,采用当今最新光伏(PV)技...

2023-02-08 标签:转换器逆变器GaN 842 0

GaN FET助力80 PLUS钛金级效率

GaN FET助力80 PLUS钛金级效率

尽管工业电源(包括数据中心)的形状和尺寸各异,但是它们的共同之处是需要保持安全、高效和稳定。由于工业电源需要在各种负载下,全天候保持高效率,因此80 P...

2023-02-08 标签:电源转换器GaN 1.6k 0

氮化镓技术壁垒是什么,氮化镓优异特性介绍

氮化镓技术壁垒是什么,氮化镓优异特性介绍

达摩院指出,近年来第三代半导体的性价比优势逐渐显现,正在打开应用市场:SiC元件已用作汽车逆变器,GaN快速充电器也大量上市。

2023-02-07 标签:逆变器SiC氮化镓 1k 0

如何应用GaN 提高功率密度和效率?

集成驱动器可减小解决方案尺寸,实现功率密集型系统。同时,集成降压/升压转换器意味着 LMG3522R030-Q1 可在 9V 至 18V 的非稳压电源下...

2023-02-06 标签:场效应晶体管氮化镓GaN 1.1k 0

浅谈氮化镓技术应用在了哪些方面

氮化镓(GaN)是一种宽带隙半导体材料,上世纪90年代就已经有了氮化镓的应用,这些年来氮化镓已经成为了全球半导体研究的热点,被誉为第三代半导体,其具有更...

2023-02-06 标签:功率器件氮化镓GaN 3.6k 0

氮化镓的重要性以及制备方法

GaN材料的研究与应用是目前全球半导体研究的前沿和热点,是研制微电子器件、光电子器件的新型半导体材料,并与SIC、金刚石等半导体材料一起,被誉为是继第一...

2023-02-05 标签:半导体电子器件氮化镓 2k 0

氮化镓工艺制造流程

氮化镓具有大禁带宽度、高电子饱和速率、高击穿电场、较高热导率、耐腐蚀以及抗辐射性能等优点,从而可以采用氮化镓制作半导体材料,而得到氮化镓半导体器件。 目...

2023-02-05 标签:半导体氮化镓GaN 8.8k 0

氮化镓芯片应用前景如何

随着半导体化合物持续发展,相较第一代硅基半导体和第二代砷化镓等半导体,第三代半导体具有高击穿电场、高热导率、高电子迁移率、高工作温度等优点。以SiC和G...

2023-02-05 标签:芯片氮化镓GaN 2.9k 0

氮化镓芯片应用领域有哪些

相对于硅材料,使用氮化镓制造新一代的电力电子器件,可以变得更小、更快和更高效。这将减少电力电子元件的质量、体积以及生命周期成本,允许设备在更高的温度、电...

2023-02-05 标签:芯片氮化镓GaN 4.2k 0

氮化镓芯片的发光原理是什么

氮化镓芯片的发光原理是什么

GaN 在电力电子领域主要优势在于高效率、低损耗与高频率,GaN 材料的这一特性令其在充电器行业大放异彩。

2023-02-05 标签:充电器氮化镓GaN 4.8k 0

氮化镓工艺优点是什么

氮化镓是半导体与微电子产业的新星,其高电子能量的特性使其拥有极高的电能转换效率和优秀的高频特性。业界已经公认氮化镓(GaN)半导体器件产品将统治微波放大...

2023-02-05 标签:半导体氮化镓GaN 2.6k 0

氮化镓工艺缺点有哪些

随着消费电子产品、电动车、家用电器等产品更新换代,产品的性能也越来越受重视,尤其是在功率设计方面。如何提升电源转换能效,提高功率密度水平,延长电池续航时...

2023-02-05 标签:氮化镓GaN 4.5k 0

氮化镓芯片应用电路了解

氮化镓芯片应用电路了解

大家好,今天我们来了解一下氮化镓芯片应用电路,帮助大家清晰的了解 GaN 产品。 氮化镓快充已然成为了当下一个非常高频的词汇,在氮化镓快充市场迅速增长之...

2023-02-05 标签:芯片氮化镓GaN 5k 0

氮化镓工艺技术是什么意思

氮化镓工艺技术是什么意思? 氮化镓是一种无机物,化学式GaN,是氮和镓的化合物,是一种直接能隙(direct bandgap)的半导体,自1990年起常...

2023-02-05 标签:半导体氮化镓GaN 2.3k 0

相关标签

相关话题

换一批
  • 蓝牙5
    蓝牙5
    +关注
    蓝牙5是蓝牙技术联盟于2016年6月16日发布的新一代蓝牙标准。蓝牙5比原来拥有更快的传输速度,更远的传输距离。蓝牙5.0的开发人员称,新版本的蓝牙传输速度上限为24Mbps,是之前4.2LE版本的两倍。蓝牙5.0的另外一个重要改进是,它的有效距离是上一版本的4倍,理论上,蓝牙发射和接收设备之间的有效工作距离可达300米。
  • Qorvo
    Qorvo
    +关注
  • 5G手机
    5G手机
    +关注
    5G网络作为最新一代的移动互联网通讯技术,相对4G而言,网速更快;5G手机是指使用第五代通信系统的智能手机。相对4G手机,5G手机有更快的传输速度,低时延,通过网络切片技术,拥有更精准的定位。
  • TWS
    TWS
    +关注
    自iphone7取消3.5mm插孔后蓝牙耳机市场得到迅猛发展,蓝牙耳机种类也层出不穷,TWS蓝牙耳机两耳挂不需要有线连接,一经面世TWS无线蓝牙耳机开始大行其道。
  • 智慧家庭
    智慧家庭
    +关注
    智慧家庭是智慧城市的最小单元,是以家庭为载体,以家庭成员之间的亲情为纽带,结合物联网、云计算、移动互联网和大数据等新一代信息技术,实现低碳、健康、智能、舒适、安全和充满关爱的家庭生活方式。
  • 智能工业
    智能工业
    +关注
      智能工业:是将具有环境感知能力的各类终端、基于泛在技术的计算模式、移动通信等不断融入到工业生产的各个环节,大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,将传统工业提升到智能化的新阶段。
  • Keysight
    Keysight
    +关注
    是德科技公司(Keysight,NYSE:KEYS)是全球领先的电子测量公司,通过在无线、模块化和软件解决方案等领域的不断创新,为您提供全新的测量体验。
  • AD9361
    AD9361
    +关注
  • nRF52832
    nRF52832
    +关注
  • 无线收发模块
    无线收发模块
    +关注
    无线收发模块JF24D整合了高频键控(GFSK)收发电路的功能,以特小体积更低成本实现高速数据传输的功能。JF24D的传输速率为1M,具有81个通道可任意设置而互不干扰。可在拥挤的ISM 频段中达到稳定可靠的短距离数据传输。
  • 太赫兹
    太赫兹
    +关注
    太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇可能引发科学技术的革命性发展。
  • 三星公司
    三星公司
    +关注
    三星集团是韩国最大的企业集团,包括85个下属公司及若干其他法人机构,在近70个国家和地区建立了近300个法人及办事处,员工总数20余万人,业务涉及电子、金融、机械、化学等众多领域。
  • 蓝牙5.0
    蓝牙5.0
    +关注
    蓝牙5.0是由蓝牙技术联盟在2016年提出的蓝牙技术标准,蓝牙5.0针对低功耗设备速度有相应提升和优化,蓝牙5.0结合wifi对室内位置进行辅助定位,提高传输速度,增加有效工作距离。
  • Elektron
    Elektron
    +关注
  • 乐鑫
    乐鑫
    +关注
    乐鑫信息科技(上海)有限公司 (Espressif Systems (Shanghai) Pte., Ltd.) 总部位于上海张江高科技园区,是一家先进、专业的无晶圆半导体公司,致力于研发设计低功耗的 Wi-Fi 和蓝牙系统级芯片,提供移动通讯和物联网解决方案。
  • WiGig
    WiGig
    +关注
    WiGig(Wireless Gigabit,无线千兆比特)是一种更快的短距离无线技术,可用于在家中快速传输大型文件。
  • lorawan
    lorawan
    +关注
    LoRaWAN基于LoRa远距离通信网络设计的一套通讯协议和系统架构,如果按协议分层来说LoRaWAN就是MAC层,LoRa是物理层。
  • KeyStone
    KeyStone
    +关注
  • 5G毫米波
    5G毫米波
    +关注
    5G毫米波技术是5G应用中一项重要的基础技术,毫米波指的是一种特殊电磁波,波长为1毫米到10毫米,波动频率为30GHz-300GHz。相对于6GHz以下的频段,毫米波具有大带宽、低空口时延和灵活弹性空口配置等独特优势,可满足未来无线通信对系统容量、传输速率和差异化应用等方面的需求。
  • JN5168
    JN5168
    +关注
  • 802.11ax
    802.11ax
    +关注
  • ZigBee3.0
    ZigBee3.0
    +关注
  • 贴片天线
    贴片天线
    +关注
  • 射频元件
    射频元件
    +关注
  • 无线设备
    无线设备
    +关注
    无线设备一般指无线电通信设备舰艇上利用无线电波传输信息的设备。主要用于舰艇对外通信,是进行远距离通信的唯一手段。由发信机、收信机、天线、馈线和相应的终端设备构成。
  • LoRa技术
    LoRa技术
    +关注
    LoRa是一种线性调频扩频调制技术,它的全称为远距离无线电(Long Range Radio),因其传输距离远、低功耗、组网灵活等诸多优势特性都与物联网碎片化、低成本、大连接的需求不谋而合,故而被广泛应用于物联网各个垂直行业中。
  • LTE-Advanced
    LTE-Advanced
    +关注
  • 超外差接收机
    超外差接收机
    +关注
      超外差接收机是利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预先确定的频率的方法。
  • 蓝牙mesh
    蓝牙mesh
    +关注
    蓝牙Mesh是基于ble广播进行消息传递的一种蓝牙组网通讯网络,是一种采用网络洪泛的方式无中心、无路由的对等网络。以实现蓝牙设备与蓝牙设备之间的多对多通讯,使蓝牙在物联网智能家居领域具有很大的优势。
  • HBT
    HBT
    +关注
     hbt为深圳市先亚进出口有限公司旗下所设的企业展示主站与销售平台网站“合宝堂”的英文简称。英文全称为“herbtown”,中文名为“合宝堂”。什么是 HBT(heterojunction bipolar transistor)一种由砷化镓(GaAs)层和铝镓砷(AlGaAs)层构成的双极晶体管。

关注此标签的用户(21人)

刘士进 jf_38010428 jf_78150839 过过小日子 kdhaha jf_30061372 jf_75715919 书铭永恒 张伟_81592513 邹广田 jf_37200696 gp601

编辑推荐厂商产品技术软件/工具OS/语言教程专题

电机控制 DSP 氮化镓 功率放大器 ChatGPT 自动驾驶 TI 瑞萨电子
BLDC PLC 碳化硅 二极管 OpenAI 元宇宙 安森美 ADI
无刷电机 FOC IGBT 逆变器 文心一言 5G 英飞凌 罗姆
直流电机 PID MOSFET 传感器 人工智能 物联网 NXP 赛灵思
步进电机 SPWM 充电桩 IPM 机器视觉 无人机 三菱电机 ST
伺服电机 SVPWM 光伏发电 UPS AR 智能电网 国民技术 Microchip
瑞萨 沁恒股份 全志 国民技术 瑞芯微 兆易创新 芯海科技 Altium
德州仪器 Vishay Micron Skyworks AMS TAIYOYUDEN 纳芯微 HARTING
adi Cypress Littelfuse Avago FTDI Cirrus LogIC Intersil Qualcomm
st Murata Panasonic Altera Bourns 矽力杰 Samtec 扬兴科技
microchip TDK Rohm Silicon Labs 圣邦微电子 安费诺工业 ixys Isocom Compo
安森美 DIODES Nidec Intel EPSON 乐鑫 Realtek ERNI电子
TE Connectivity Toshiba OMRON Sensirion Broadcom Semtech 旺宏 英飞凌
Nexperia Lattice KEMET 顺络电子 霍尼韦尔 pulse ISSI NXP
Xilinx 广濑电机 金升阳 君耀电子 聚洵 Liteon 新洁能 Maxim
MPS 亿光 Exar 菲尼克斯 CUI WIZnet Molex Yageo
Samsung 风华高科 WINBOND 长晶科技 晶导微电子 上海贝岭 KOA Echelon
Coilcraft LRC trinamic
放大器 运算放大器 差动放大器 电流感应放大器 比较器 仪表放大器 可变增益放大器 隔离放大器
时钟 时钟振荡器 时钟发生器 时钟缓冲器 定时器 寄存器 实时时钟 PWM 调制器
视频放大器 功率放大器 频率转换器 扬声器放大器 音频转换器 音频开关 音频接口 音频编解码器
模数转换器 数模转换器 数字电位器 触摸屏控制器 AFE ADC DAC 电源管理
线性稳压器 LDO 开关稳压器 DC/DC 降压转换器 电源模块 MOSFET IGBT
振荡器 谐振器 滤波器 电容器 电感器 电阻器 二极管 晶体管
变送器 传感器 解析器 编码器 陀螺仪 加速计 温度传感器 压力传感器
电机驱动器 步进驱动器 TWS BLDC 无刷直流驱动器 湿度传感器 光学传感器 图像传感器
数字隔离器 ESD 保护 收发器 桥接器 多路复用器 氮化镓 PFC 数字电源
开关电源 步进电机 无线充电 LabVIEW EMC PLC OLED 单片机
5G m2m DSP MCU ASIC CPU ROM DRAM
NB-IoT LoRa Zigbee NFC 蓝牙 RFID Wi-Fi SIGFOX
Type-C USB 以太网 仿真器 RISC RAM 寄存器 GPU
语音识别 万用表 CPLD 耦合 电路仿真 电容滤波 保护电路 看门狗
CAN CSI DSI DVI Ethernet HDMI I2C RS-485
SDI nas DMA HomeKit 阈值电压 UART 机器学习 TensorFlow
Arduino BeagleBone 树莓派 STM32 MSP430 EFM32 ARM mbed EDA
示波器 LPC imx8 PSoC Altium Designer Allegro Mentor Pads
OrCAD Cadence AutoCAD 华秋DFM Keil MATLAB MPLAB Quartus
C++ Java Python JavaScript node.js RISC-V verilog Tensorflow
Android iOS linux RTOS FreeRTOS LiteOS RT-THread uCOS
DuerOS Brillo Windows11 HarmonyOS
林超文PCB设计:PADS教程,PADS视频教程 郑振宇老师:Altium Designer教程,Altium Designer视频教程
张飞实战电子视频教程 朱有鹏老师:海思HI3518e教程,HI3518e视频教程
李增老师:信号完整性教程,高速电路仿真教程 华为鸿蒙系统教程,HarmonyOS视频教程
赛盛:EMC设计教程,EMC视频教程 杜洋老师:STM32教程,STM32视频教程
唐佐林:c语言基础教程,c语言基础视频教程 张飞:BUCK电源教程,BUCK电源视频教程
正点原子:FPGA教程,FPGA视频教程 韦东山老师:嵌入式教程,嵌入式视频教程
张先凤老师:C语言基础视频教程 许孝刚老师:Modbus通讯视频教程
王振涛老师:NB-IoT开发视频教程 Mill老师:FPGA教程,Zynq视频教程
C语言视频教程 RK3566芯片资料合集
朱有鹏老师:U-Boot源码分析视频教程 开源硬件专题