0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

绝缘导热透波膜材在5G毫米波通讯电子产品元器件散热设计的探讨​

向欣电子 2021-12-13 11:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

导语:5G时代巨大数据流量对于通讯终端的芯片、天线等部件提出了更高的要求,器件功耗大幅提升的同时,引起了这些部位发热量的急剧增加。BN氮化硼散热膜是当前5G射频芯片、毫米波天线、无线充电、无线传输、IGBT、印刷线路板、AI物联网等领域最为有效的散热材料,具有不可替代性。

本产品是国内首创自主研发的高质量二维氮化硼纳米片,成功制备了大面积、厚度可控的二维氮化硼散热膜,具有透电磁波、高导热、高柔性、低介电系数、低介电损耗等多种优异特性,解决了当前我国电子封装及热管理领域面临的“卡脖子”问题,拥有国际先进的热管理TIM解决方案及相关材料生产技术,是国内低维材料技术领域顶尖的创新型高科技产品。

什么是5G?

定义

f952134e-5b5e-11ec-a27f-dac502259ad0.png

f969dda8-5b5e-11ec-a27f-dac502259ad0.png

“5G”一词通常用于指代第5代移动网络。5G是继之前的标准(1G、2G、3G、4G 网络)之后的最新全球无线标准,并为数据密集型应用提供更高的带宽。除其他好处外,5G有助于建立一个新的、更强大的网络,该网络能够支持通常被称为 IoT 或“物联网”的设备爆炸式增长的连接——该网络不仅可以连接人们通常使用的端点,还可以连接一系列新设备,包括各种家用物品和机器。

公认的5G优势是:

•具有更高可用性和容量的更可靠的网络

•更高的峰值数据速度(多Gbps)

•超低延迟

与前几代网络不同,5G网络利用在26GHz 至40GHz范围内运行的高频波长(通常称为毫米波)。由于干扰建筑物、树木甚至雨等物体,在这些高频下会遇到传输损耗,因此需要更高功率和更高效的电源

5G部署最初可能会以增强型移动宽带应用为中心,满足以人为中心的多媒体内容、服务和数据接入需求。增强型移动宽带用例将包括全新的应用领域、性能提升的需求和日益无缝的用户体验,超越现有移动宽带应用所支持的水平。

f982b30a-5b5e-11ec-a27f-dac502259ad0.jpg

毫米波是关键技术

f9935a84-5b5e-11ec-a27f-dac502259ad0.png

毫米波通信是未来无线移动通信重要发展方向之一,目前已经在大规模天线技术、低比特量化ADC、低复杂度信道估计技术、功放非线性失真等关键技术上有了明显研究进展。但是随着新一代无线通信对无线宽带通信网络提出新的长距离、高移动、更大传输速率的军用、民用特殊应用场景的需求,针对毫米波无线通信的理论研究与系统设计面临重大挑战,开展面向长距离、高移动毫米波无线宽带系统的基础理论和关键技术研究,已经成为新一代宽带移动通信最具潜力的研究方向之一。

毫米波的优势:毫米波由于其频率高、波长短,具有如下特点:

频谱宽,配合各种多址复用技术的使用可以极大提升信道容量,适用于高速多媒体传输业务;可靠性高,较高的频率使其受干扰很少,能较好抵抗雨水天气的影响,提供稳定的传输信道;方向性好,毫米波受空气中各种悬浮颗粒物的吸收较大,使得传输波束较窄,增大了窃听难度,适合短距离点对点通信;波长极短,所需的天线尺寸很小,易于在较小的空间内集成大规模天线阵。

毫米波的缺点:毫米波也有一个主要缺点,那就是不容易穿过建筑物或者障碍物,并且可以被叶子和雨水吸收,对材料非常敏感。这也是为什么5G网络将会采用小基站的方式来加强传统的蜂窝塔。

什么是TIM热管理?

定义

f9a8ae7a-5b5e-11ec-a27f-dac502259ad0.png

热管理?顾名思义,就是对“热“进行管理,英文是:Thermal Management。热管理系统广泛应用于国民经济以及国防等各个领域,控制着系统中热的分散、存储与转换。先进的热管理材料构成了热管理系统的物质基础,而热传导率则是所有热管理材料的核心技术指标。

f9bf8596-5b5e-11ec-a27f-dac502259ad0.png

导热率,又称导热系数,反映物质的热传导能力,按傅立叶定律,其定义为单位温度梯度(在1m长度内温度降低1K)在单位时间内经单位导热面所传递的热量。热导率大,表示物体是优良的热导体;而热导率小的是热的不良导体或为热绝缘体。

f9d8694e-5b5e-11ec-a27f-dac502259ad0.png

5G手机以及硬件终端产品的小型化、集成化和多功能化,毫米波穿透力差,电子设备和许多其他高功率系统的性能和可靠性受到散热问题的严重威胁。要解决这个问题,散热材料必须在导热性、厚度、灵活性和坚固性方面获得更好的性能,以匹配散热系统的复杂性和高度集成性。

f9f12632-5b5e-11ec-a27f-dac502259ad0.png

全球智能手机、平板电脑行业步入 5G 时代,随着智能手机对轻薄化、小型化设计的追求,手机内部集成电路芯片和电子元器件体积不断缩小,其功率密度却快速增加;手机CPU频率正迅速提升,同时封装密度也越来越高、机身越来越薄,其功率密度却快速增加,但由于手机硬件配置的逐步提高、CPU多核高性能的升级,以及通信速率的提升,散热问题已经成为电子设备亟需解决的问题,进而驱动对高散热性能材料的需求。

fa0e6d32-5b5e-11ec-a27f-dac502259ad0.png

一旦散热问题处理得不好,就会造成智能手机卡顿、运行程序慢、烧坏主板甚至造成爆炸的危险,所以散热将成为整个智能手机行业面临的主要问题之一。

fa244dd2-5b5e-11ec-a27f-dac502259ad0.png

散热原理包括热传导热对流热辐射,其中热传导、热对流为主。热传导是直接接触带走热量,如电脑CPU散热片底座与CPU直接接触带走热量;常用电风扇原理是热对流,散热风扇带动气体流动进行散热;热辐射指的是依靠射线辐射传递热量。其中热传导和热对流是散热系统主要方式,热传导主要与散热器材料的导热系数和热容有关,热对流则主要与散热器的散热面积有关。

fa3a12c0-5b5e-11ec-a27f-dac502259ad0.png

根据热传导和热对流方式不同,散热分为主动散热被动散热两种方式。通常我们所说的被动散热,就是cpu只采用的是散热片,其气流通常由侧面安装的风扇完成推动工作;主动式散热是我们常见的方式,就是在散热片上面还加装了一个风机。目前台式电脑和笔记本电脑采用主动与被动结合的方式散热,手机终端、平板电脑等轻薄型消费电子受内部空间结构限制,多采用被动散热方案。材料种类及其特点在智能手机上主要的发热源包括这五个方面:主要芯片工作、LCD 驱动、电池释放及充电、 CCM 驱动芯片PCB 结构设计导热散热量不均匀。fa4c2aa0-5b5e-11ec-a27f-dac502259ad0.png

fa604d96-5b5e-11ec-a27f-dac502259ad0.png

fa95ddd0-5b5e-11ec-a27f-dac502259ad0.png

5G毫米波通讯产品电子元器件散热设计の探讨

1.元器件布局减小热阻的措施:
(1)元器件安装在最佳自然散热的位置上;
(2)元器件热流通道要短、横截面要大和通道中无绝热或隔热物;
(3)发热元件分散安装;

2.元器件排放减少热影响:
(1)有通风口的机箱内部,电路安装应服从空气流动方向:进风口→放大电路→逻辑电路→敏感电路→集成电路→小功率电阻电路→有发热元件电路→出风口,构成良好散热通道;
(2)发热元器件要在机箱上方,热敏感元器件在机箱下方,利用机箱金属壳体作散热装置。

3.合理布局准则:
(1)将发热量大的元件安装在条件好的地方,如靠近通风孔;
(2)将热敏元件安装在热源下面。零件安装方向横向面与风向平行,利于热对流。
(3)在自然对流中,热流通道尽可能短,横截面积应尽量大;
(4)冷却气流流速不大时,元件按叉排方式排列,提高气流紊流程度、增加散热效果;
(5)发热元件不安装在机壳上时,与机壳之间的距离应>35~40cm

4.冷却内部部件的空气进口须加过滤装置,且不必拆开机壳即可更换或清洗。

5.设计上避免器件工作热环境的稳定性,以减轻热循环与冲击而引起的温度应力变化。温度变化率不超过1℃/min,温度变化范围不超过20℃,此指标要求可根据产品不同由厂家自行调整。
6.元器件的冷却剂及冷却方法应与所选冷却系统及元件相适应,不会因此产生化学反应或电解腐蚀。

7.冷却系统的电功率一般为所需冷却热功率的3%一6%;

8.冷却时,气流中含有水分,温差过大,会产生凝露或附着,防止水份及其它污染物等导致电气短路、电气间隙减小或发生腐蚀。
措施:
a)冷却前后温差不要过大;
b)温差过大会产生凝露的部位,水分不会造成堵塞或积水,如果有积水,积水部位的材料不会发生腐蚀;
c)对裸露的导电金属加热缩套管或其他遮挡绝缘措施;

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 毫米波
    +关注

    关注

    21

    文章

    2013

    浏览量

    67497
  • 5G
    5G
    +关注

    关注

    1366

    文章

    49073

    浏览量

    590257
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    科普|浅谈毫米波PTCRB认证中的应用

    毫米波,早些年应用于军事场景较为广泛,现在伴随5G技术逐渐走进大众视野,走进民用通信。俗称FR2,当然这个是3GPP定义毫米波的时候给出的技术标准分类,随着6
    的头像 发表于 12-10 15:23 72次阅读
    科普|浅谈<b class='flag-5'>毫米波</b><b class='flag-5'>在</b>PTCRB认证中的应用

    导热硅胶片在电源散热中的应用与解决方案

    片在电源散热中的实施方法 正确的应用方法对发挥导热硅胶片的性能至关重要: 表面准备:确保安装表面清洁、干燥、无油污。 精准裁切:根据PCB板上元器件大小进行裁剪,撕掉一面的保护
    发表于 11-27 15:04

    5G毫米波射频软排线至电路板连接器技术解析

    Molex 5G毫米波射频软排线至电路板连接器为高速 (15GHz) 射频应用提供高信号完整性性能。Molex 5G毫米波射频软排线至电路板连接器提供稳固的垂直插配和PCB空间节省功能
    的头像 发表于 11-21 11:18 303次阅读

    科普|5G毫米波专网牌照,意义何在?

    ,说白了,就是国家将部分毫米波频段资源授权给企业使用。企业可以基于这些频段,建设自己的5G专网。大家都知道,现在是信息时代,包括工厂、园区、港口、货场、矿区、医院等
    的头像 发表于 10-14 18:07 1035次阅读
    科普|<b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>专网牌照,意义何在?

    电子产品散热设计指南:如何精准选择导热界面材料

    电子设备的每一次性能跃升,芯片、CPU、GPU、功率模块等核心元器件的发热量也随之攀升,都对其内部的热管理能力提出更严峻的考验。高效地将这些“热源”产生的能量导出并散发,已成为保障设备性能、稳定性
    发表于 09-29 16:15

    广和通5G毫米波商用进程提速

    当你10秒内下载一部10GB的高清电影时,当体育赛事的8K直播毫无延迟时,当无人机千米高空被精准定位时——5G毫米波应用正悄然走进我们的生活。
    的头像 发表于 09-26 13:41 6173次阅读

    科普|看懂毫米波雷达,这一篇就够啦!

    /5G,电磁频率0.7-4.9GHz之间。毫米波的频率比它要高1-2个数量级。比毫米波频率更高一级的,则是太赫兹(THz)频段。根据“波
    的头像 发表于 07-26 04:06 1458次阅读
    科普|看懂<b class='flag-5'>毫米波</b>雷达,这一篇就够啦!

    看懂毫米波雷达,这一篇就够啦!

    /5G,电磁频率0.7-4.9GHz之间。毫米波的频率比它要高1-2个数量级。比毫米波频率更高一级的,则是太赫兹(THz)频段。根据“波
    的头像 发表于 07-09 19:02 1801次阅读
    看懂<b class='flag-5'>毫米波</b>雷达,这一篇就够啦!

    ALN4300-02-2335毫米波低噪声放大器WENTEQ

    系统:适合于5G和未来6G通信的毫米波频段,为高速度数据通讯提供保障。卫星通讯卫星通信系统中
    发表于 06-19 09:14

    Leadway测试级铠装精密稳相毫米波线缆(110GHz)

    测试,如卫星载荷验证与电子战系统校准。应用场景l 5G/6G通信测试:用于毫米波频段的基站测试、终端设备性能验证等场景。l 航空航天与国防:满足雷达系统、卫星通信设备的高频测试需求,支
    发表于 05-19 09:53

    5G毫米波专网重塑英特尔成都工厂AMR系统

    工业智能化加速发展的今天,5G 技术正成为关键驱动力。然而,基于公网的工业 5G 方案时延、可靠性和覆盖能力方面仍存在瓶颈,影响了部分应用场景的稳定性和实时性。作为突破性技术,
    的头像 发表于 04-08 09:24 1147次阅读
    <b class='flag-5'>5G</b><b class='flag-5'>毫米波</b>专网重塑英特尔成都工厂AMR系统

    二维氮化硼散热 | 毫米波通讯绝缘散热材料

    5G毫米波通讯技术面临的挑战:兼顾散热和信号传输毫米波通信是未来无线移动通信重要发展方向之一,目前已经
    的头像 发表于 03-21 06:31 681次阅读
    二维氮化硼<b class='flag-5'>散热</b><b class='flag-5'>膜</b> | <b class='flag-5'>毫米波</b><b class='flag-5'>通讯</b><b class='flag-5'>透</b><b class='flag-5'>波</b><b class='flag-5'>绝缘</b><b class='flag-5'>散热</b>材料

    ALN4000-10-3530毫米波低噪声放大器WENTEQ

    ℃~+125℃ 应用领域 雷达系统:用于毫米波雷达的前端信号放大,提升探测距离和精度。 卫星通信:作为接收机的前置放大器,提高信号接收质量。 5G/6G 通信:支持毫米波频段的基站和终
    发表于 03-12 09:30

    华为发布5G-A毫米波万兆网络

    2月10日,中国联通与华为中国联通5G-A行动计划发布会上联合宣布了一项重大创新成果——5G-A毫米波万兆网络。这一成果的发布,为正在哈尔滨举行的冰雪盛会增添了一抹亮丽的科技色彩。
    的头像 发表于 02-11 09:39 1303次阅读

    ALN3750-13-3335毫米波低噪声放大器WENTEQ

    ALN3750-13-3335毫米波低噪声放大器WENTEQALN3750-13-3335毫米波低噪声放大器是毫米波通信系统中的核心组件,专为高频信号放大而设计,尤其适用于5G及未来6
    发表于 02-11 09:32