0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

基于3D大孔框架的微型电池实现高容量、高能量密度以及高集成性

清新电源 来源:新威智能App 2023-05-12 16:05 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研究背景

可在芯片上集成的小型化能源,是下一代自供能微型电子设备的核心元件之一。结合了高电化学性能与高集成性的微型储能器件,可为诸多微型电子设备供能,例如:自供能无线微型传感器、便携/免维护微型电子设备、便携可穿戴个人电子设备以及微电子机械系统等。目前,具有梳齿电极的微型超级电容器因其易于制造、环境友好、高面积功率密度以及长循环等优势,获得了研究者们广泛研究。然而,稳定的放电平台与高能量密度对于电子元件运行至关重要,因此微型电池在微型电子设备中发挥的作用至关重要。作为目前商用的微型能源,锂离子薄膜电池具有高面积能量密度与出色的集成特性,然而低循环寿命、低功率密度以及高成本,限制了它们在下一代自供能微电子系统中的应用。因此,具有高安全、高能量/功率密度、无毒、工艺简单的水系微型电池,可作为极具潜力的微型储能器件,应用于下一代微型电子设备中。

文章简介

近日,武汉理工大学麦立强教授等人在《Advanced Energy Materials》上发表题为“3D Macroporous Frame Based Microbattery With Ultrahigh Capacity, Energy Density, and Integrability”的文章。该工作的要点如下:

1. 在微电极表面构筑大孔框架,利用电沉积法生长聚3,4-乙烯二氧噻吩/二氧化锰混合物薄膜。

2. 通过调控混合物薄膜厚度,实现高负载的同时,兼顾了高比表面积与高电子电导,获得高能量/功率密度。

3. 该微型电池具有极高工作稳定性,可以在高速旋转的轴流风机叶片表面稳定工作。同时无基底电极设计一方面可使其直接安装于设备表面供电;另一方面可以实现多层电极堆叠,成倍提升其面积能量密度。

图文解读

首先在微电极表面构筑3D大孔框架,再通过电沉积得到兼顾高负载与多孔结构的PEDOT-MnO2混合物薄膜。在微电极中,电子在镍3D框架中快速传导,同时混合物薄膜的大孔结构也为离子输运提供了高表面积,实现高能量密度与高功率密度的协同。(图1)。

70667c90-f09b-11ed-90ce-dac502259ad0.png

图1.微型电池工艺流程示意图。

本工作通过快速电沉积法,在微电极表面得到多孔镍3D框架(图2a,b)。通过电沉积生长后,得到了具有多孔形貌的PEDOT-MnO2混合物薄膜,同时微电极外观保持不变。通过EDS表征(图d),MnO2中的Mn元素和PEDOT中的S元素分布均匀。XPS图谱中可以检测到S,Mn等元素的存在(图2e),同时其Mn 2p3/2和Mn 2p1/2的11.7eV的自旋能量分离,也表明了Mn4+的存在。

70934d74-f09b-11ed-90ce-dac502259ad0.png

图2. PEDOT-MnO2微电极的SEM图像及其EDS图谱与XPS图谱。

通过不同厚度的PEDOT-MnO2微电极的电化学表征发现,随着厚度增加,面积比容量逐步增加(图3a),其中PEDOT-MnO2-70的面积比容量可达1.42 mAh cm–2,同时具有较高的容量保持率(图3b,c)。我们采用Dunn等人提出的方法,对微电极的电荷存储机制进行了研究,该微电极的在扫速为1,2,3,4,5mV s–1时,其电容性贡献占总电荷贡献的比例分别为51.4%, 66.2%, 72.7%, 76.5%, 85.4%(图3e,f)。为了研究混合物对离子扩散系数的影响,我们采用了GITT法对PEDOT-MnO2-70和MnO2-70微电极的离子扩散系数进行了测试。从测试结果发现,两曲线均有两段平台,包括H+离子快速嵌入的平台I和Zn2+慢速嵌入的平台II(图3g,h)。同时,相似的GITT曲线与扩散系数曲线表明两种电极具有相似的存储机制(图2i)。

70c14eb8-f09b-11ed-90ce-dac502259ad0.png

图3. 微电极的电化学性能图。

组装后的微型电池的电化学性能由图4表示,微型电池的CV曲线与GCD曲线与PEDOT-MnO2-70微电极的水系性能具有高相似性,表明凝胶电解液与Zn@CNTs负极的稳定性能(图4a,b)。图4c为该微型电池通过GCD曲线计算的能量/功率密度与其他工作的对比拉贡图。可以看出其优异的性能相对于其他锰基微型电池/微型超级电容器均具有优势。该微型电池可以通过串联的方式增加到~5 V的高放电电压(图4d)。由于其无基底的微电极设计,微型电池可以直接固定在温湿度计表面为其稳定供电(图4e)。同时,其高稳定性可以实现在高速旋转的轴流风机叶片表面稳定工作(图4f)。其高能量密度与稳定的放电平台可为电子钟持续供电400min(图4g)。此外,通过四层微型电极的叠加,微型电池的面积能量密度可提升至3.87mWh cm–2,同时由于分层的集流体设计,其功率密度可保持不变。

70e2faae-f09b-11ed-90ce-dac502259ad0.png

图4. 微型电池的电化学性能与应用。

总结与展望

在这项工作中,我们采用电沉积法制造了具有3D大孔结构的PEDOT-MnO2//Zn微型电池。通过调整3D框架表面的混合物薄膜,我们得到了兼顾高负载、高电子电导与高离子传输速度的微电极正极。该微型电池具有出色的能量/功率密度,同时展现出了极好的集成性与工作稳定性。此外其可任意堆叠的特性使其可以轻易获得高面积比容量。基于以上优势,PEDOT-MnO2//Zn微型电池极有潜力应用于下一代自供能微型电子系统。





审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子电池
    +关注

    关注

    85

    文章

    3529

    浏览量

    80247
  • 无线传感器
    +关注

    关注

    15

    文章

    777

    浏览量

    100139
  • 薄膜电池
    +关注

    关注

    0

    文章

    34

    浏览量

    12773
  • EDS
    EDS
    +关注

    关注

    0

    文章

    103

    浏览量

    12230

原文标题:武汉理工麦立强教授教授AEM:基于3D大孔框架的微型电池实现高容量、高能量密度以及高集成性

文章出处:【微信号:清新电源,微信公众号:清新电源】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    电池黏结剂机理:新型粘结剂实现更强电极完整性

    随着电动汽车和规模化储能市场的快速发展,对锂离子电池能量密度的要求日益提高。镍层状氧化物正极材料(如LiNiₓCo_yMn_zO₂)因其
    的头像 发表于 11-11 18:03 2164次阅读
    锂<b class='flag-5'>电池</b>黏结剂机理:新型粘结剂<b class='flag-5'>实现</b>更强电极完整性

    超级电容器与电池的区别与联系

    超级电容器与电池各具优势,超快充放电适合功率场景,高能量密度适合长期供电,互补共促新能源发展。
    的头像 发表于 11-11 09:14 414次阅读
    超级电容器与<b class='flag-5'>电池</b>的区别与联系

    电池制造 | 破解石墨/硅复合电极的奥秘:纳米多孔结构设计推动高能量电池发展

    【美能锂电】在电动汽车革命浪潮中,高能量锂离子电池扮演着关键角色。然而,目前主流的石墨负极材料理论容量有限,仅为372mAhg⁻¹。科学家们将目光投向了硅材料,其理论容量高达3579m
    的头像 发表于 10-28 18:01 288次阅读
    锂<b class='flag-5'>电池</b>制造 | 破解石墨/硅复合电极的奥秘:纳米多孔结构设计推动<b class='flag-5'>高能量</b>锂<b class='flag-5'>电池</b>发展

    三维集成电路与晶圆级3D集成介绍

    微电子技术的演进始终围绕微型化、高效性、集成度与低成本四大核心驱动力展开,封装技术亦随之从传统TSOP、CSP、WLP逐步迈向系统级集成的PoP、SiP及3D IC方向,最终目标是在最
    的头像 发表于 10-21 17:38 1625次阅读
    三维<b class='flag-5'>集成</b>电路与晶圆级<b class='flag-5'>3D</b><b class='flag-5'>集成</b>介绍

    半导体封装模具导通深光学 3D 轮廓测量 - 激光频率梳 3D 轮廓技术

    结构,深偏差>2μm 或内壁台阶>0.8μm 会导致焊料填充不均,引发芯片焊接良率下降 15% 以上。传统检测依赖显微成像与接触式探针,前者受景深限制,深测量误差>4μm,后者易划伤壁且无法适配高
    的头像 发表于 10-17 09:58 282次阅读
    半导体封装模具导通<b class='flag-5'>孔</b><b class='flag-5'>孔</b>深光学 <b class='flag-5'>3D</b> 轮廓测量 - 激光频率梳 <b class='flag-5'>3D</b> 轮廓技术

    3D封装架构的分类和定义

    3D封装架构主要分为芯片对芯片集成、封装对封装集成和异构集成三大类,分别采用TSV、TCB和混合键合等先进工艺实现
    的头像 发表于 10-16 16:23 1383次阅读
    <b class='flag-5'>3D</b>封装架构的分类和定义

    目前最好的超级电容能量密度

    超级电容器通过材料创新和结构优化,实现高能量密度与快速充放电,推动新能源和智能装备应用,形成差异化竞争格局。
    的头像 发表于 09-27 09:06 761次阅读
    目前最好的超级电容<b class='flag-5'>能量</b><b class='flag-5'>密度</b>

    磷酸铁锂与超级电容电池对比

    磷酸铁锂电池与超级电容分别以高能量密度功率密度著称,前者侧重续航,后者专注瞬时响应,寿命与安全性各有优势。
    的头像 发表于 08-08 09:10 718次阅读
    磷酸铁锂与超级电容<b class='flag-5'>电池</b>对比

    多芯粒2.5D/3D集成技术研究现状

    面向高性能计算机、人工智能、无人系统对电子芯片高性能、集成度的需求,以 2.5D3D 集成技术为代表的先进封装
    的头像 发表于 06-16 15:58 1300次阅读
    多芯粒2.5<b class='flag-5'>D</b>/<b class='flag-5'>3D</b><b class='flag-5'>集成</b>技术研究现状

    上海光机所在高能量深紫外激光研究方面取得进展

    图1 KDP家族晶体产生深紫外激光特性分析 近日,中国科学院上海光学精密机械研究所功率激光物理联合实验室在高能量深紫外激光产生研究方面取得新进展,相关研究成果以Deep-UV laser
    的头像 发表于 03-03 09:08 601次阅读
    上海光机所在<b class='flag-5'>高能量</b>深紫外激光研究方面取得进展

    临界电流密度固态电池单晶锂的合成

    锂金属一直以来被认为是高能量密度电池的理想负极材料。不幸的是,锂金属负极在实际电流密度下容易形成枝晶,限制了其应用。早期的理论工作预测,具有剪切模量大于8 GPa的固态电解质将抑制锂的
    的头像 发表于 03-01 16:05 1611次阅读
    <b class='flag-5'>高</b>临界电流<b class='flag-5'>密度</b>固态<b class='flag-5'>电池</b>单晶锂的合成

    法拉电容具有高能量密度功率密度的特点,广泛应用于以下领域

    法拉电容具有高能量密度功率密度的特点,广泛应用于以下领域:1.电子设备:法拉电容可用于移动设备、电子手表、智能手机等电子产品中,用于储存短时间内需要大量
    的头像 发表于 02-26 13:28 955次阅读
    法拉电容具有<b class='flag-5'>高能量</b><b class='flag-5'>密度</b>和<b class='flag-5'>高</b>功率<b class='flag-5'>密度</b>的特点,广泛应用于以下领域

    一种高能量密度水系有机液流电池

    多电子转移分子在提高水系有机液流电池(AOFBs)的能量密度和降低成本方面具有巨大潜力。然而,用于增加氧化还原活性位点和稳定多电子反应所需的扩展共轭单元总会降低分子极性,从而限制其在电解液中的溶解度。
    的头像 发表于 02-07 14:33 990次阅读
    一种<b class='flag-5'>高能量</b><b class='flag-5'>密度</b>水系有机液流<b class='flag-5'>电池</b>

    超级电容是电池的替代品,你认同吗?

    超级电容作为一种新型的储能器件,因其能量密度、快速充电和放电速度、使用时间长、电容量大等特点,被认为是电池的一种替代品。但在
    的头像 发表于 12-31 15:00 1443次阅读
    超级电容是<b class='flag-5'>电池</b>的替代品,你认同吗?

    T#2-Li0.69CoO2:耐用、高容量、高倍率锂离子电池正极材料

    研究背景 随着对高能量密度和可持续能源存储解决方案的需求不断增加,锂离子电池因其卓越的性能和广泛的应用而成为现代能源存储系统的核心。然而,传统的层状过渡金属氧化物(LTMO₂)如O3-
    的头像 发表于 12-18 09:56 1460次阅读
    T#2-Li0.69CoO2:耐用、<b class='flag-5'>高容量</b>、高倍率锂离子<b class='flag-5'>电池</b>正极材料