0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

芯片巨头,发力背面供电

旺材芯片 来源:半导体行业观察 2023-05-08 10:25 次阅读

英特尔很快将在“Intel 4”E-Core 芯片中展示其称为 PowerVia 的下一代背面供电技术。

英特尔的背面供电实验芯片基于未命名的节能“E 核”,并在Intel4工艺技术上实现。英特尔将在 2023 年 VLSI 技术和电路研讨会上公布的调查结果表明,英特尔的 PowerVia 在核心的大部分区域实现了超过 90% 的标准单元利用率,同时还提供了超过 5% 的时钟速度提升,因为减少了红外压降。英特尔准备展示的一张图片似乎证明了这一点,尽管无法评估类似内核在实际工作负载中的表现。

英特尔 PowerVia 演示即将推出:利用芯片背面的独立模块实现功率传输。

VLSI已在推特上发布了英特尔 PowerVia 实施的第一眼,并将在 6 月开始的 2023 年 VLSI 研讨会期间进行演示。在推文中,VLSI 展示了英特尔在芯片背面实施 PowerVia 的情况,该芯片被提及使用“Intel 4”工艺节点并搭载全 E-Core 实施。

9dd4cf16-ed43-11ed-90ce-dac502259ad0.png

Intel 4 芯片看起来像是基于旧的 LGA1151/LGA1200 设计,因为它的形状是方形的,并且在封装下方有一个辅助裸片。这是您通常会看到大量小型晶体管的区域,但其中大部分已被 PowerVia 技术取代。考虑到 E-Core 实施基于“Intel 4”,它很可能基于即将推出的为 Meteor Lake 的 E-Core 提供动力的 Crestmont 架构。

此外,电池利用率显示,在芯片内 2.9mm2 的面积内,Intel PowerVia 技术的利用率可高达 90%。此外,这不仅提高了利用率,而且还导致时钟速度略有提高,IR 压降减少,在同一芯片上实现了高 5% 的时钟。

更有趣的是,VLSI 表示这是一种高产设计,但至少要到 Arrow Lake 或 Lunar Lake 世代才会出现。原因是20A和18A工艺节点的消费级芯片将采用PowerVia和RibbonFET 。据说第一批 PowerVia 芯片将于 2024 年投入量产。

9e106c06-ed43-11ed-90ce-dac502259ad0.png

从早些时候,我们知道 PowerVia 是一种功率传输工艺,它在背面工作,以解决硅架构中互连中的瓶颈问题。这是 PowerVia 推出后应该解决的常见问题。Power Via 不是将数据通信信号电源互连传输到晶体管层的顶部,而是直接传输到硅晶圆的背面,同时在晶圆顶部传输信号。

我们迫不及待地想看看 PowerVia 做了什么,并在接下来的几个月里看到它的实际应用,因为它听起来绝对是一种可以改变电力传输格局的技术。

背面供电是大势所趋

据此前报道,芯片供电网络(Power Delivery Network, PDN)的设计目标是以最高效率为芯片上的主动元件提供所需的电源(VDD)与参考电压(VSS)。一直以来,业界都是利用后段制程(BEOL),在晶圆正面布线,透过这些低电阻的导线来供应电力给芯片(图1)。但也因为如此,芯片内的供电网络与信号网络(即芯片内的信号线)必须共用相同的元件空间。

9e2ea806-ed43-11ed-90ce-dac502259ad0.jpg

图1.传统的芯片正面供电网络

但随着制程节点往前推进,把电源网络实作在芯片正面,遇到越来越多挑战,使得业界开始探索把供电网络转移到背面的可能性,从而让晶背供电(Backside PDN)成为热门的技术议题。本文将先从传统PDN所遇到的挑战谈起,进一步探讨晶背供电技术的优势,以及这项技术未来的发展重点。

传统PDN布线面临诸多挑战

为了将电力从封装传输至芯片中的电晶体,电子必须经由金属导线和通孔,穿越15~20层BEOL堆叠。然而,越接近电晶体,线宽和通孔就越窄,电阻值也因而上升,这使得电子在向下传输的过程中,会出现IR压降现象,导致电力损失产生。

除了电力损失之外,PDN占用的空间也是一个问题。当电子快到达电晶体,例如抵达标准元件层时,电子会进入由BEOL制程所制造Mint金属层,进而分配给负责提供工作电压与接地电压的电源轨。然后,这些电源轨会透过互连网络,连接到每一个电晶体的源极与汲极,完成供电任务。但这些电源轨会占用元件周围及标准单元(Standard Cell)之间的空间。

然而,随着制程技术世代交替,传统后段制程的元件架构难以跟上电晶体的微缩速度。如今,芯片内部的电源线路,在布线复杂的后段制程上,往往占据了至少20%的绕线资源,如何解决信号网络跟供电网络之间的资源排挤问题,变成芯片设计者所面临的主要挑战之一。此外,电源线和接地线在标准单元设计上占了很大空间,使得元件很难进一步微缩。就系统设计而言,因为功率密度和IR压降急剧增加,从稳压器到电晶体的功率损失就很难控制在10%以下,带给工程师严峻挑战。

晶背供电网络具有雄厚潜力

把芯片内的PDN从正面移到背面,也就是所谓的晶背PDN(图2),可以解决上述问题。若能将供电网络与信号网络分离,把电源线路全部移至晶圆背面,就能对标准单元进行直接供电,不仅导线更宽、电阻更低,而且电子还不需层层穿越后段制程的元件堆叠。如以一来,不仅缓解了IR压降问题,让PDN的效能获得改善,同时也避免了后段制程的布线壅塞问题。如果设计得当,晶背PDN甚至还能进一步减少标准单元的高度。

9e422c78-ed43-11ed-90ce-dac502259ad0.jpg

图2 把供电网络从正面转移到背面,让供电网络跟信号网络分离,可带来诸多效益

要把PDN从芯片正面转移到背面,需要两项关键技术,分别是埋入式电源轨(BPR)与纳米硅穿孔(nTSV),其结构示意如图3。

9e57e3b0-ed43-11ed-90ce-dac502259ad0.jpg

图3 晶背供电网络结构的示意图,最顶端的Nanosheet电晶体藉由埋入式电源轨跟纳米硅穿孔,连接到位于芯片背部的互联线路

埋入式电源轨是一种微缩化技术,可以进一步降低标准单元的高度,并减缓IR压降问题。这些电源轨是埋在电晶体下方的导线,一部份藏在硅基板内,另一部份则在浅沟槽隔离氧化层内。它们取代了传统后段制程在标准单元布下的电源线与接地线。

将供电网络的实作从后段制程移到前段制程,是划时代之举。这种作法能有效减少Mint层的元件堆叠数量,进而微缩标准单元尺寸。还有一点,如果电源轨设计在标准单元的垂直向,还能放宽导线,进而减缓IR压降。

在2019年的IEEE国际电子研究会议(IEDM)上,imec携手硅智财公司Arm,预测晶背供电技术所能带来的效能升级。Arm在其开发与采用先进设计规则的中央处理器(CPU)上进行模拟,并比较「传统供电」、「晶圆正面供电结合埋入式电源轨」、「晶背供电搭配纳米硅穿孔与埋入式电源轨」这三种供电网络实作方法的优劣。

模拟结果显示,就供电效率来看,第三种明显胜过其它实作方法。芯片上的动态IR压降热力图(图4)显示,与传统的正面供电网络相比,导入埋入式电源轨后,IR压降最多可以减至1.7倍。但埋入式电轨结合晶背供电网络的性能表现更佳,电压损耗大幅下降7倍。

9e715d0e-ed43-11ed-90ce-dac502259ad0.jpg

图4 三种不同供电方法的动态IR压降模拟热力图

晶背PDN制程解析

接下来,我们会说明晶背供电网络的其中一项应用案例:纳米硅穿孔在超薄膜晶圆的背面进行制造,并与埋入式电源轨连接。我们以在晶圆正面制造的FinFET为例,这些元件透过埋入式电源轨与纳米硅穿孔,连接到晶圆背面。其制程步骤如图5。

9e898960-ed43-11ed-90ce-dac502259ad0.jpg

图5 晶背供电网络制程包含与纳米硅穿孔相连的埋入式电源轨。为了方便说明,步骤2和步骤3的部分细节与步骤1雷同,故省略,包含连接埋入式电源轨与元件

步骤1:在晶圆正面制程导入埋入式电轨

首先,在12吋硅晶圆上成长一层硅锗(SiGe)层。这层硅锗材料在接下来进行晶圆研磨(步骤2)时可以当作蚀刻停止层。接下来,在硅锗层上方成长一层薄膜硅覆盖层,这时才算开始制造元件与埋入式电源轨。埋入式电源轨在进行浅沟槽隔离后才确定图形。这些沟槽在硅覆盖层内蚀刻成形,并以氧化物(衬垫层)与金属材料(例如钨或钌)填充。通常,这些电源轨的最大线宽为30nm,最大间距为100nm。接着在金属材料挖洞,并覆盖一层介电材料。元件(本文指的是FinFET)的制造是在布下埋入式电源轨之后,而这些电源轨透过连接到BPR的通孔(via-to-BPR, VBPR)与M0A层的导线,与电晶体的源极和汲极连接。最后进行铜金属化。

步骤2:晶圆接合与研磨

载有元件与埋入式电源轨的晶圆接着翻到另一面,让用来制造主动元件的晶圆正面与未图形化的载板接合。先在室温下采用SiCN熔接制程(Fusion Bonding),然后在250℃下进行退火,第一片晶圆的背面就能研磨到硅锗层,也就是蚀刻停止层。晶圆研磨步骤结合了化学机械研磨(CMP)与湿式、干式蚀刻技术,依序进行晶背薄化处理。接着,移除硅锗层,晶圆处理就绪,准备进入纳米硅穿孔制程。

步骤3:制造纳米硅穿孔并连接到埋入式电源轨

先在晶背长出一层钝化层,随后采用一种能从晶背穿透硅材进行对准的微影制程,进行纳米硅穿孔的图形化。这里所用的蚀刻技术可以穿透硅材(深度达到数百纳米)来制造纳米硅穿孔,这些通孔最后落在埋入式电源轨上,并以氧化物与金属钨填充。

在这个特殊案例中,纳米硅穿孔的间距为200nm,完全没占用到标准单元的空间。最终是制造单层或多层的金属层,这些位于晶背的元件层会透过纳米硅穿孔,与晶圆正面的埋入式电源轨实现通电。

锁定三大关键步骤进一步改良

导入晶背供电网络意味着增加制程步骤。这几年来,imec展示了不少关键技术,逐步处理这些新增制程步骤所带来的挑战。

为埋入式电源轨引进新金属材料

就先前提议的制程,埋入式电源轨会在制成元件前,于前段制程制造。也就是说,这些金属导线必须在后续进行元件制造的步骤时承受高温。对芯片制造商来说,这就跟数十年前在后段制程导入铜材料一样,极具颠覆性。

因此,埋入式电源轨的材料选择至关重要。imec可以整合以不同耐火金属制成的埋入式电源轨,包含钌(Ru)和钨(W)等高度耐热的金属元素。为了避免前段制程的材料受到污染,imec研究团队还额外增加了覆盖层来包覆这些金属导线。

imec相信,就性能升级与微缩化而言,结合埋入式电源轨与纳米硅穿孔的发展潜力十分可观。晶背供电网络还有其它做法,但是有的会牺牲供电效能、标准单元面积,或是增加前段制程的复杂度。

提高晶圆研磨精准度

为了将纳米硅穿孔连接至后续制造的铜导线,并降低其电阻,进而减缓IR压降,我们必须更精准地控制晶圆薄化的厚度,研磨至数百纳米。这就限制了晶圆厚度的容许差异,但在进行不同道研磨步骤时就可能出现变异性。imec携手合作伙伴,致力于改良蚀刻制程的化学溶液。例如,最后一道湿式蚀刻能够展现高度选择性,干净去除硅锗层。在晶圆研磨的最后一步,硅锗层被移除,这时需要一种对硅材具备高度选择性的专用化学物质。这样才能确保硅覆盖层能够平滑露出,厚度差异小于40nm。

不过,在硅基板高度薄化的情况下,元件本身的温度变化所造成的热冲击(Thermal Impact)会变得更加明显。这是需要审慎评估的一点。初步模拟结果显示,晶背的导线可协助从横向散逸热能,因此对整体散热效果能带来许多助益,从而缓解了热冲击的疑虑。其它与散热有关的模拟工作仍在进行,以获取更多这方面的资讯。

提高晶圆接合对位精度

晶圆接合步骤会让主动式元件所在的第一层晶圆产生形变,进而在微影方面带来技术挑战。因为要在晶圆研磨后,从晶背进行纳米硅穿孔的图形化,故微影技术需要更高精确度,才能让纳米硅穿孔与下层的埋入式电源轨对准。因为这些元件特征都算是标准单元设计,对准精度应该优于10nm。但是传统的微影对准技术不足以准确校正晶圆接合的形变。

值得庆幸的是,晶圆接合技术已有多项进展,对准误差和失真都已大幅下降。此外,透过先进的微影校正技术,纳米硅穿孔对准埋入式电源轨的误差可以降至10nm以下。

新增制程不影响元件电性

在前段制程添加埋入式电源轨、晶圆研磨跟纳米硅穿孔这些新步骤,会影响前段制程所制造出的元件的电性吗?这点想必是很多半导体制程工程师都会有的疑问。

为了找出解答,imec近期开发了测试元件,采用上述制程与经过改良的做法。该元件是微型FinFET(图6),利用精确的对准能力,将纳米硅穿孔从晶背连接至320nm深的埋入式电源轨。电源轨透过MOA层与VO通孔连接到晶圆正面的导线。借此,研究人员就能比较测试元件在进行后段制程前后的电性差异。结果显示,只要在制程最后进行退火,就能取得FinFET的最佳性能,不受埋入式电源轨与后段制程影响。

9ea882fc-ed43-11ed-90ce-dac502259ad0.jpg

图6 微型FinFET测试元件的穿透式电子显微镜(TEM)图,可见其与晶圆正面和背面相连

先进逻辑与3D SoC率先获益

有些芯片厂商已经宣布将在2nm及未来技术节点的逻辑芯片制程,也就是Nanosheet电晶体世代导入晶背供电技术。不过,这项新兴的布线技术其实可以应用在更广泛的电晶体架构上。imec认为,未来业界将发展出具备6T的Nanosheet电晶体,若结合埋入式电源轨设计,标准单元高度可望降至6T以下。

其实,晶背供电技术的应用不仅限于2D芯片,未来还有可能用来提升3D系统单芯片(SoC)的性能。想像未来的3D SoC能将部分甚至所有的记忆体元件移到芯片上层,逻辑元件则在下层,如图7。

9ebdda76-ed43-11ed-90ce-dac502259ad0.jpg

图7 导入晶背供电网络的3D SoC示意图

技术上,这是可以透过晶圆接合技术实现的。把逻辑元件与记忆体分别置于不同晶圆的正面,再将两片晶圆正面接合。这时,两片晶圆的背面变成3D SoC的外侧。接着就是思考如何善用逻辑元件那片晶圆的背面,才能把电源连接到核心逻辑电路。其实,透过2D SoC技术就能做到这点,但主要差别是前面提到的载板晶圆,本来是为了晶圆研磨而设计,但现在则是以记忆体那片晶圆来取代。

虽然目前还未进入实验,初步评估这套做法在IR压降方面的发展可期。透过先进制程研究用的设计流程套件(PDK),上述解决方案在逻辑与记忆体堆叠(Memory-on-logic)的芯片分区设计上进行验证。结果显示,结合晶背供电网络、纳米硅穿孔与埋入式电源轨的元件性能颇富前景:与传统从晶圆正面供电的做法相比,底层元件的平均IR压降减少81%,峰值减少77%。因此,晶背供电技术特别适合用于先进CMOS的3D IC设计

不论是2D或3D芯片设计,晶背空间还能有其它的延伸应用,像是增设I/O或静电保护(ESD)等元件。举例来说,imec结合了晶背供电技术与2.5D元件:一颗柱状且由金属—绝缘体—金属(MIM)组成的去耦电容。该元件将电容密度提升了4~5倍,利于进一步控制IR压降。这些研究成果皆源自经过实验数据校正的IR压降模型。

晶背供电带来诸多优势发展潜力值得期待

新一代芯片很可能打破传统,从晶圆背面供电。晶背供电网络的设计包含在晶圆背面制造金属导线、埋入式电源轨与纳米硅穿孔,具备多项发展优势,不仅能减少IR压降、纾解后段制程的布线压力,还能帮助微缩标准单元。关键的制程技术包含整合埋入式电源轨、晶圆接合、晶圆研磨与纳米硅穿孔制程,全都在进行研发改良,为将来应用在先进逻辑元件与3D SOC做准备。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    447

    文章

    47795

    浏览量

    409153
  • 电阻
    +关注

    关注

    85

    文章

    5037

    浏览量

    169638
  • 英特尔
    +关注

    关注

    60

    文章

    9425

    浏览量

    168831

原文标题:芯片巨头,发力背面供电

文章出处:【微信号:wc_ysj,微信公众号:旺材芯片】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    背面供电成先进制程竞争又一技术高地,英特尔先发制人,台积电、三星加码跟进

    的逻辑半导体具有10至15层甚至更多的多层布线,细信号线和粗电源线混合在多层布线中,线路层越来越混乱。为了解决芯片设计线路层混乱的问题,背面供电网络BSPDN技术的应用受到越来越多的关注。   探索
    的头像 发表于 09-03 00:01 1642次阅读
    <b class='flag-5'>背面</b><b class='flag-5'>供电</b>成先进制程竞争又一技术高地,英特尔先发制人,台积电、三星加码跟进

    台积电2023年报预告:2026年N2制程量产,首推背面供电

    传统芯片制造方式是自下而上,先制作晶体管,然后构建互联和供电线路层。然而,随着制程工艺的不断缩小,传统供电模式的线路层变得愈发复杂,给设计和制造带来困扰。
    的头像 发表于 04-25 14:43 130次阅读

    英特尔推进摩尔定律 芯片背面供电

    洞见分析
    电子发烧友网官方
    发布于 :2023年12月12日 11:46:35

    英特尔宣布完成PowerVia背面供电技术的开发

    英特尔在2023年国际电子设备制造大会上宣布,他们已经成功完成了一项名为PowerVia的背面供电技术的开发。这个技术是基于英特尔的最新晶体管研究成果,它实现了互补金属氧化物半导体场效应晶体管
    的头像 发表于 12-11 16:10 528次阅读
    英特尔宣布完成PowerVia<b class='flag-5'>背面</b><b class='flag-5'>供电</b>技术的开发

    背面供电选项:一项DTCO研究

    ,整个配电网络被移至晶圆的背面。硅通孔(TSV)将电源直接从背面传送到正面,而无需电子穿过芯片正面上日益复杂的后道工序(BEOL)堆栈。 图1. 背面
    的头像 发表于 09-05 16:39 511次阅读
    <b class='flag-5'>背面</b><b class='flag-5'>供电</b>选项:一项DTCO研究

    背面电力传输 下一代逻辑的游戏规则改变者

    背面电力传输打破了在硅晶圆正面处理信号和电力传输网络的长期传统。通过背面供电,整个配电网络被移至晶圆的背面。硅通孔 (TSV) 将电源直接从背面
    的头像 发表于 08-30 10:34 589次阅读
    <b class='flag-5'>背面</b>电力传输 下一代逻辑的游戏规则改变者

    三星半导体宣布突破背面供电技术

    半导体技术的许多进步都取决于减小封装尺寸,同时结合附加功能和更高效的供电方法。目前的供电方法会占用晶圆上的大量空间,导致成本增加、芯片尺寸增大和晶体管减少。
    的头像 发表于 08-16 09:51 607次阅读
    三星半导体宣布突破<b class='flag-5'>背面</b><b class='flag-5'>供电</b>技术

    背面供电与DRAM、3D NAND三大技术介绍

    最近有许多正在全球范围内研究和开发的技术,例如晶体管GAA(Gate All around)、背面供电以及3D IC。
    的头像 发表于 07-26 18:21 2078次阅读
    <b class='flag-5'>背面</b><b class='flag-5'>供电</b>与DRAM、3D NAND三大技术介绍

    芯片巨头力阻对华芯片出口限制

    芯片巨头力阻对华芯片出口限制 美芯片巨头力阻对华芯片出口限制此前,英特尔、高通和英伟达这美三大
    的头像 发表于 07-18 12:40 1125次阅读

    美三大芯片巨头CEO被曝将游说拜登

    美三大芯片巨头CEO被曝将游说拜登 美国实施的《芯片和科学法案》和各项无理限制措施使得美国的芯片厂商失去了一部分的市场,为挽回市场美三大芯片
    的头像 发表于 07-15 18:35 1716次阅读

    三星2nm,走向背面供电

    背面实施流程已通过成功的 SF2 测试芯片流片得到验证。这是 2nm 设计的一项关键功能,但可能会受到三星、英特尔和台积电缺乏布线的限制,而是在晶圆背面布线并使用过孔连接电源线。
    的头像 发表于 07-05 09:51 499次阅读

    英特尔在芯片中实现背面供电

    英特尔表示,它是业内第一个在类似产品的测试芯片上实现背面供电的公司,实现了推动世界进入下一个计算时代所需的性能。PowerVia 将于 2024 年上半年在英特尔 20A 工艺节点上推出,正是英特尔业界领先的
    的头像 发表于 06-20 15:39 368次阅读

    英特尔PowerVia技术率先实现芯片背面供电,突破互连瓶颈

    英特尔宣布在业内率先在产品级测试芯片上实现背面供电(backside power delivery)技术,满足迈向下一个计算时代的性能需求。作为英特尔业界领先的背面
    的头像 发表于 06-09 20:10 206次阅读

    王炸,英特尔PowerVia芯片背面供电即将量产,遥遥领先三星和台积电

    Kobrinsky还将阐述英特尔对PowerVia更先进部署方法的研究成果,如同时在晶圆正面和背面实现信号传输和供电。 PowerVia将于2024年上半年在Intel 20A制程节点上推出。 作为延续摩尔定律
    的头像 发表于 06-07 16:56 723次阅读

    英特尔PowerVia技术率先实现芯片背面供电,突破互连瓶颈

    英特尔率先在产品级芯片上实现背面供电技术,使单元利用率超过90%,同时也在其它维度展现了业界领先的性能。 英特尔宣布在业内率先在产品级测试芯片上实现
    的头像 发表于 06-06 16:22 346次阅读