0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

如何在训练过程中正确地把数据输入给模型

XILINX开发者社区 来源:XILINX开发者社区 作者:XILINX开发者社区 2021-07-01 10:47 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

机器学习中一个常见问题是判定与数据交互的最佳方式。

在本文中,我们将提供一种高效方法,用于完成数据的交互、组织以及最终变换(预处理)。随后,我们将讲解如何在训练过程中正确地把数据输入给模型。

PyTorch 框架将帮助我们实现此目标,我们还将从头开始编写几个类。PyTorch 可提供更完整的原生类,但创建我们自己的类可帮助我们加速学习。

第 1 部分:原始数据和数据集

首先我们把尚未经过组织的所有样本称为“原始数据”。

把“数据集”定义为现成可用的数据,即含标签以及基本函数接口(以便于使用原始数据信息)的原始数据。

此处我们使用一种简单的原始数据形式:1 个包含图像和标签的文件夹。

但此方法可扩展至任意性质的样本(可以是图片、录音、视频等)以及包含标签的文件。

标签文件中的每一行都用于描述 1 个样本和相关标签,格式如下:

file_sample_1 label1

file_sample_2 label2

file_sample_3 label3

(。。。)

当能够完成一些基本信息查询(已有样本数量、返回特定编号的样本、预处理每个样本等)时,说明我们已从原始数据集创建了 1 个数据集。

此方法基于面向对象编程以及创建用于数据处理的 “类”。

对于一组简单的图像和标签而言,此方法可能看上去略显杀鸡用牛刀(实际上,此用例通常是通过创建分别用于训练、验证和测试的独立文件夹来进行处理的)。但如果要选择标准交互方法,则此方法将来可复用于多种不同用例,以节省时间。

Python 中处理数据

在 Python 中所有一切都是对象:整数、列表、字典都是如此。

构建含标准属性和方法的“数据集”对象的原因多种多样。我认为,代码的精致要求就足以合理化这一选择,但我理解这是品味的问题。可移植性、速度和代码模块化可能是最重要的原因。

在许多示例以及编码书籍中,我发现了面向对象的编码(尤以类为甚)的其它有趣的功能和优势,总结如下:

• 类可提供继承

• 继承可提供复用

• 继承可提供数据类型扩展

• 继承支持多态现象

• 继承是面向对象的编码的特有功能

■输入 [1]:

import torch

from torchvision import transforms

to_tensor = transforms.ToTensor()

from collections import namedtuple

import functools

import copy

import csv

from PIL import Image

from matplotlib import pyplot as plt

import numpy as np

import os

import datetime

import torch.optim as optim

在我们的示例中,所有原始样本都存储在文件夹中。此文件夹的地址在 raw_data_path 变量中声明。

■输入 [2]:

raw_data_path = ‘。/raw_data/data_images’

构建模块

数据集接口需要一些函数和类。数据集本身就是一个对象,因此我们将创建 MyDataset 类来包含所有重要函数和变量。

首先,我们需要读取标签文件,然后可对样本在其原始格式(此处为 PIL 图像)以及最终的张量格式应用某些变换。

我们需要使用以下函数来读取 1 次标签文件,然后创建包含所有样本名称和标签的元组。

内存中缓存可提升性能,但如果标签文件发生更改,请务必更新缓存内容。

■ 输入 [113]:

DataInfoTuple = namedtuple(‘Sample’,‘SampleName, SampleLabel’)

def myFunc(e):

return e.SampleLabel

# in memory caching decorator: ref https://dbader.org/blog/python-memoization

@functools.lru_cache(1)

def getSampleInfoList(raw_data_path):

sample_list = []

with open(str(raw_data_path) + ‘/labels.txt’, mode = ‘r’) as f:

reader = csv.reader(f, delimiter = ‘ ’)

for i, row in enumerate(reader):

imgname = row[0]

label = int(row[1])

sample_list.append(DataInfoTuple(imgname, label))

sample_list.sort(reverse=False, key=myFunc)

# print(“DataInfoTouple: samples list length = {}”.format(len(sample_list)))

return sample_list

如需直接变换 PIL 图像,那么以下类很实用。

该类仅含 1 种方法:resize。resize 方法能够改变 PIL 图像的原始大小,并对其进行重新采样。如需其它预处理(翻转、剪切、旋转等),需在此类种添加方法。

当 PIL 图像完成预处理后,即可将其转换为张量。此外还可对张量执行进一步的处理步骤。

在以下示例种,可以看到这两种变换:

■ 输入 [4]:

class PilTransform():

“”“generic transformation of a pil image”“”

def resize(self, img, **kwargs):

img = img.resize(( kwargs.get(‘width’), kwargs.get(‘height’)), resample=Image.NEAREST)

return img

# creation of the object pil_transform, having all powers inherited by the class PilTransform

pil_transform = PilTransform()

以下是类 PilTransform 的实操示例:

■ 输入 [5]:

path = raw_data_path + “/img_00000600.JPEG”

print(path)

im1 = Image.open(path, mode=‘r’)

plt.imshow(im1)

。/raw_data/data_images/img_00000600.JPEG

■ 输出 [5]:

《matplotlib.image.AxesImage at 0x121046f5588》

■ 输入 [6]:

im2 = pil_transform.resize(im1, width=128, height=128)

# im2.show()

plt.imshow(im2)

■ 输出 [6]:

《matplotlib.image.AxesImage at 0x12104b36358》

最后,我们定义一个类,用于实现与原始数据的交互。

类 MyDataset 主要提供了 2 个方法:

__len__ 可提供原始样本的数量。

__getitem__ 可使对象变为可迭代类型,并按张量格式返回请求的样本(已完成预处理)。

__getitem__ 步骤:

1) 打开来自文件的样本。

2) 按样本的原始格式对其进行预处理。

3) 将样本变换为张量。

4) 以张量格式对样本进行预处理。

此处添加的预处理仅作为示例。

此类可对张量进行归一化(求平均值和标准差),这有助于加速训练过程。

请注意,PIL 图像由范围 0-255 内的整数值组成,而张量则为范围 0-1 内的浮点数矩阵。

该类会返回包含两个元素的列表:在位置 [0] 返回张量,在位置 [1] 返回包含 SampleName 和 SampleLabel 的命名元组。

■ 输入 [109]:

class MyDataset():

“”“Interface class to raw data, providing the total number of samples in the dataset and a preprocessed item”“”

def __init__(self,

isValSet_bool = None,

raw_data_path = ‘。/’,

SampleInfoList = DataInfoTuple,norm = False,

resize = False,

newsize = (32, 32)

):

self.raw_data_path = raw_data_path

self.SampleInfoList = copy.copy(getSampleInfoList(self.raw_data_path))

self.isValSet_bool = isValSet_bool

self.norm = norm

self.resize = resize

self.newsize = newsize

def __str__(self):

return ‘Path of raw data is ’ + self.raw_data_path + ‘/’ + ‘《raw samples》’

def __len__(self):

return len(self.SampleInfoList)

def __getitem__(self, ndx):

SampleInfoList_tup = self.SampleInfoList[ndx]

filepath = self.raw_data_path + ‘/’ + str(SampleInfoList_tup.SampleName)

if os.path.exists(filepath):

img = Image.open(filepath)

# PIL image preprocess (examples)

#resize

if self.resize:

width, height = img.size

if (width 》= height) & (self.newsize[0] 》= self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[0], height=self.newsize[1])

elif (width 》= height) & (self.newsize[0] 《 self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[1], height=self.newsize[0])

elif (width 《 height) & (self.newsize[0] 《= self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[0], height=self.newsize[1])

elif (width 《 height) & (self.newsize[0] 》 self.newsize[1]):

img = pil_transform.resize(img, width=self.newsize[1], height=self.newsize[0])

else:

print(“ERROR”)

# from pil image to tensor

img_t = to_tensor(img)

# tensor preprocess (examples)

#rotation

ratio = img_t.shape[1]/img_t.shape[2]

if ratio 》 1:

img_t = torch.rot90(img_t, 1, [1, 2])

#normalization requires the knowledge of all tensors

if self.norm:

img_t = normalize(img_t)

#return img_t, SampleInfoList_tup

return img_t, SampleInfoList_tup.SampleLabel

else:

print(‘[WARNING] file {} does not exist’.format(str(SampleInfoList_tup.SampleName)))

return None

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 机器学习
    +关注

    关注

    66

    文章

    8541

    浏览量

    136230
  • 数据集
    +关注

    关注

    4

    文章

    1230

    浏览量

    26046
  • PIL
    PIL
    +关注

    关注

    0

    文章

    19

    浏览量

    8919
  • pytorch
    +关注

    关注

    2

    文章

    813

    浏览量

    14696

原文标题:开发者分享 | 利用 Python 和 PyTorch 处理面向对象的数据集:1. 原始数据和数据集

文章出处:【微信号:gh_2d1c7e2d540e,微信公众号:XILINX开发者社区】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    在Ubuntu20.04系统中训练神经网络模型的一些经验

    , batch_size=512, epochs=20)总结 这个核心算法中的卷积神经网络结构和训练过程,是用来对MNIST手写数字图像进行分类的。模型将图像作为输入,通过卷积和池化层提取图像的特征,然后通过全连接层进行分类预
    发表于 10-22 07:03

    何在Ray分布式计算框架下集成NVIDIA Nsight Systems进行GPU性能分析

    在大语言模型的强化学习训练过程中,GPU 性能优化至关重要。随着模型规模不断扩大,如何高效地分析和优化 GPU 性能成为开发者面临的主要挑战之一。
    的头像 发表于 07-23 10:34 2039次阅读
    如<b class='flag-5'>何在</b>Ray分布式计算框架下集成NVIDIA Nsight Systems进行GPU性能分析

    如何正确地进行信号放大

    晶体管和运放都可以放大信号,但到底什么是信号放大,以及如何正确地进行信号放大。在学习电子设计的过程中,我从未在微控制器和逻辑门的世界里遇到过什么困难。但模拟电路是一个不同的故事;有好一阵子,我只能
    的头像 发表于 04-15 11:52 1143次阅读
    如何<b class='flag-5'>正确地</b>进行信号放大

    MIMXRT1176如何在MBDT中正确实现自定义LUT?

    (peripherals.c peripherals.h),但我注意到它们在编译时被覆盖了。 如何在 MBDT 中正确实现自定义 LUT?此外,有没有办法修改默认 LUT 而不在编译期间重置它?
    发表于 04-08 07:56

    请问如何在imx8mplus上部署和运行YOLOv5训练模型

    。我在 yo tflite 中转换模型并尝试在 tensorflow 脚本上运行模型,但它不起作用。 如何在 imx8mplus 上运行 YOLOv5 模型? 在 imx8mplus
    发表于 03-25 07:23

    数据标注服务—奠定大模型训练数据基石

    数据标注是大模型训练过程中不可或缺的基础环节,其质量直接影响着模型的性能表现。在大模型训练中,
    的头像 发表于 03-21 10:30 2305次阅读

    标贝数据标注服务:奠定大模型训练数据基石

    数据标注是大模型训练过程中不可或缺的基础环节,其质量直接影响着模型的性能表现。在大模型训练中,
    的头像 发表于 03-21 10:27 877次阅读
    标贝<b class='flag-5'>数据</b>标注服务:奠定大<b class='flag-5'>模型</b><b class='flag-5'>训练</b>的<b class='flag-5'>数据</b>基石

    是否可以输入随机数据集来生成INT8训练后量化模型

    无法确定是否可以输入随机数据集来生成 INT8 训练后量化模型
    发表于 03-06 06:45

    模型训练:开源数据与算法的机遇与挑战分析

    进行多方位的总结和梳理。 在第二章《TOP 101-2024 大模型观点》中,苏州盛派网络科技有限公司创始人兼首席架构师苏震巍分析了大模型训练过程中开源数据集和算法的重要性和影响,分析
    的头像 发表于 02-20 10:40 996次阅读
    大<b class='flag-5'>模型</b><b class='flag-5'>训练</b>:开源<b class='flag-5'>数据</b>与算法的机遇与挑战分析

    用PaddleNLP在4060单卡上实践大模型训练技术

    手把手教您如何在单张消费级显卡上,利用PaddleNLP实践OpenAI的GPT-2模型的预训练。GPT-2的预训练关键技术与流程与GPT-4等大参数
    的头像 发表于 02-19 16:10 2130次阅读
    用PaddleNLP在4060单卡上实践大<b class='flag-5'>模型</b>预<b class='flag-5'>训练</b>技术

    如何训练BP神经网络模型

    BP(Back Propagation)神经网络是一种经典的人工神经网络模型,其训练过程主要分为两个阶段:前向传播和反向传播。以下是训练BP神经网络模型的步骤: 一、前向传播 前向传播
    的头像 发表于 02-12 15:10 1463次阅读

    腾讯公布大语言模型训练新专利

    大语言模型训练过程中引入第一摘要文本和第二摘要文本,为模型提供了更为丰富的学习信息。这两个摘要文本在信息量上存在差异,且第一摘要文本中既包含正确语句也包含错误语句。这一设计使得
    的头像 发表于 02-10 09:37 713次阅读

    何在播放视频过程中插入音频

    ZDP14x0是一款基于开源GUI引擎的图像显示专用驱动芯片,可以通过串口或者SPI与其他芯片通信,且能播放视频。本文将介绍如何在播放视频过程中插入音频。
    的头像 发表于 12-26 11:13 1947次阅读
    如<b class='flag-5'>何在</b>播放视频<b class='flag-5'>过程中</b>插入音频

    GPU是如何训练AI大模型

    在AI模型训练过程中,大量的计算工作集中在矩阵乘法、向量加法和激活函数等运算上。这些运算正是GPU所擅长的。接下来,AI部落小编带您了解GPU是如何训练AI大模型的。
    的头像 发表于 12-19 17:54 1322次阅读

    AI模型部署边缘设备的奇妙之旅:目标检测模型

    意味着它可以在训练过程中根据数据自动调整。这种灵活性使得PReLU能够更好地适应不同任务的需求。 公式: 其中 ?? 是针对每个神经元或共享所有神经元的学习参数,用于控制负区间的斜率。 优点 自适应学习
    发表于 12-19 14:33