0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一篇文章带你认识《双目立体视觉》

新机器视觉 来源:CSDN技术社区 作者:一颗小树X 2021-04-26 14:19 次阅读

前言

双目立体视觉,由两个摄像头组成,像人的眼睛能看到三维的物体,获取物体长度、宽度信息,和深度的信息;单目视觉获取二维的物体信息,即长度、宽度。

1)双目摄像头

常见的双目摄像头有以下几款:

能看到不同类型的双目摄像头,左摄像头和右摄像头之间的距离不一样。

2)双目相机基线

基线越大,测量范围越远;基线越小,测量范围越近。

建议:

(1)基线距B是工作距离的08-2.2倍时测量误差比较小;

(2)双目立体视觉的结构对称时,测量系统的误差比较小,精度也比较高。

(3)两台相机的有效焦距∫越大,视场越小,视觉测量系统的测量精度越高(即采用长焦距镜头容易获得较高的测量精度)

出自博士论文 基于双目视觉的空间非合作目标姿态测量技术研究。颜坤

3)打开双目摄像头

在OpenCV用使用双目摄像头,包括:打开单目摄像头、设置摄像头参数、拍照、录制视频

环境

编程语言:Python3 主要依赖库:OpenCV3.x 或 OpenCV4.x

双目同步摄像头,两个镜头共用一个设备ID,左右摄像机同一频率。这款摄像头分辨率支持2560*960或以上。

思路流程

1、由于两个镜头共用一个设备ID,打开摄像头时使用cv2.VideoCapture()函数,只需打开一次。区别有的双目摄像头是左右镜头各用一个设备ID,需要打开两次cv2.VideoCapture(0),cv2.VideoCapture(1)。

2、双目摄像头的总分辨率是由左右镜头组成的,比如:左右摄像机总分辨率1280x480;分割为左相机640x480、右相机640x480

为了方便理解画了张草图;图中的“原点”是图像像素坐标系的原点。

3、分割后,左相机的分辨率:高度 0:480、宽度 0:640

右相机的分辨率:高度 0:480、宽度 640:1280

4、转换为代码后

# 读取摄像头数据

ret, frame = camera.read()

#裁剪坐标为[y0:y1, x0:x1] HEIGHT * WIDTH

left_frame = frame[0:480, 0:640]

right_frame = frame[0:480, 640:1280]

cv2.imshow(“left”, left_frame)

cv2.imshow(“right”, right_frame)

源代码

举个栗子:打开分辨率1280x480的双目摄像头

# -*- coding: utf-8 -*-

import cv2

import time

AUTO = False # 自动拍照,或手动按s键拍照

INTERVAL = 2 # 自动拍照间隔

cv2.namedWindow(“left”)

cv2.namedWindow(“right”)

camera = cv2.VideoCapture(0)

# 设置分辨率 左右摄像机同一频率,同一设备ID;左右摄像机总分辨率1280x480;分割为两个640x480、640x480

camera.set(cv2.CAP_PROP_FRAME_WIDTH,1280)

camera.set(cv2.CAP_PROP_FRAME_HEIGHT,480)

counter = 0

utc = time.time()

folder = “。/SaveImage/” # 拍照文件目录

def shot(pos, frame):

global counter

path = folder + pos + “_” + str(counter) + “.jpg”

cv2.imwrite(path, frame)

print(“snapshot saved into: ” + path)

while True:

ret, frame = camera.read()

# 裁剪坐标为[y0:y1, x0:x1] HEIGHT*WIDTH

left_frame = frame[0:480, 0:640]

right_frame = frame[0:480, 640:1280]

cv2.imshow(“left”, left_frame)

cv2.imshow(“right”, right_frame)

now = time.time()

if AUTO and now - utc 》= INTERVAL:

shot(“left”, left_frame)

shot(“right”, right_frame)

counter += 1

utc = now

key = cv2.waitKey(1)

if key == ord(“q”):

break

elif key == ord(“s”):

shot(“left”, left_frame)

shot(“right”, right_frame)

counter += 1

camera.release()

cv2.destroyWindow(“left”)

cv2.destroyWindow(“right”)

补充理解

OpenCV有VideoCapture()函数,能用来定义“摄像头”对象,0表示第一个摄像头(一般是电脑内置的摄像头);如果有两个摄像头,第二个摄像头则对应VideoCapture(1)。

在while循环中使用“摄像头对象”的read()函数一帧一帧地读取摄像头画面数据。

imshow函数是显示摄像头的某帧画面;cv2.waitKey(1)是等待1ms,如果期间检测到了键盘输入q,则退出while循环。

效果

4)双目测距

原理

视差disparity

极线约束

极线校正/立体校正

双目测距流程:

a.双目标定

b.双目矫正

c.立体匹配

d.双目测距(三角测量)

e.测距效果

原理

通过对两幅图像视差的计算,直接对图像所拍摄到的范围进行距离测量,无需判断前方出现的是什么类型的障碍物。

o4YBAGCGXHSAP9ctAAIB8Nbbiro048.png

视差disparity

首先看一组视觉图:左相机图和右相机图不是完全一致的,通过计算两者的差值,形成视差,生成视差图(也叫:深度图)

视差是同一个空间点在两个相机成像中对应的x坐标的差值;

它可以通过编码成灰度图来反映出距离的远近,离镜头越近的灰度越亮;

我们观察一下,看到台灯在前面,离双目相机比较近,在灰度图呈现比较亮;摄影机及支架在后方,离双目相机比较远,在灰度图呈现比较暗。

补充理解:

由立体视觉系统测量的深度被离散成平行平面 (每个视差值一个对应一个平面)

给定具有基线 b 和焦距 f 的立体装备, 系统的距离场受视差范围[dmin ,dmax]的约束。

极线约束

极线约束(Epipolar Constraint)是指当空间点在两幅图像上分别成像时,已知左图投影点p1,那么对应右图投影点p2一定在相对于p1的极线上,这样可以极大的缩小匹配范围。

pIYBAGCGXLOAPKEXAAIK-8o5b9w626.png

标准形式的双目摄像头,左右相机对齐,焦距相同。

pIYBAGCGXNSAThFQAAJsjQw00Gk841.png

如果不是标准形式的双目摄像头呢?哦,它是是这样的:(需要 极线校正/立体校正)

极线校正/立体校正

双目测距流程:

相机标定(获取内参+外参)

双目矫正(矫正镜头变形图像)

双目立体匹配(生成视差图 Disparity map)

计算深度信息(生成深度图 Depth map)

计算距离

a.双目标定

主要是获取内参(左摄像头内参+右摄像头内参)、外参(左右摄像头之间平移向量+旋转矩阵)

标定过程:

详细过程请参考:双目视觉 标定+矫正 (基于MATLAB

b.双目矫正

消除镜头变形,将立体相机对转换为标准形式

c.立体匹配

寻找左右相机对应的点(同源点)

d.双目测距(三角测量)

给定视差图、基线和焦距,通过三角计算在3D中对应的位置

o4YBAGCGXQ2AV88fAAJPgl5suuU260.png

双目测距原理

o4YBAGCGXTOAcrRjAAG5hFei-5w838.png

C++版代码请参考:双目 机器视觉-- 测距

Python版代码:看看大家情况,如果需要的,我抽时间完成分享给大家(BM、SGBM算法等)

e.测距效果

彩蛋:双目立体匹配(重点)

立体匹配是双目立体视觉中比较重要的一环,往往这里做研究和优化。

a.立体匹配流程

o4YBAGCGXVuAVF0OAABObZ8Tnyo191.png

b.匹配代价计算

代价函数用于计算左、右图中两个像素之间的匹配代价(cost)。 cost越大,表示这两个像素为对应点的可能性越低。

常用代价函数

AD/BT

AD+Gradient

Census transform

SAD/SSD

NCC

AD+Census

CNN

c.立体匹配

端到端视差计算网络

 Disp-Net (2016)

 GC-Net (2017)

 iRestNet (2018)

 PSM-Net (2018)

 Stereo-Net (2018)

 GA-Net (2019)

 EdgeStereo (2020)

\

立体视觉方法评测网站

ETH3D https://www.eth3d.net/

Kitti Stereo http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo

Middlebury Stereo 3.0 https://vision.middlebury.edu/stereo/eval3/

如果大家对端到端视差计算网络感兴趣,需要开源代码跑通教程和介绍,也考虑分享大家,主要看大家意愿了。

双目测距总结

优势

(1)成本比单目系统要高,但尚处于可接受范围内,并且与激光雷达等方案相比成本较低;

(2)没有识别率的限制,因为从原理上无需先进行识别再进行测算,而是对所有障碍物直接进行测量;

(3)直接利用视差计算距离,精度比单目高;

(4)无需维护样本数据库,因为对于双目没有样本的概念。

难点

(1)计算量大,对计算单元的性能要求高,这使得双目系统的产品化、小型化的难度较;(芯片FPGA

(2)双目的配准效果,直接影响到测距的准确性;

(3)对环境光照非常敏感;(光照角度、光照强度)

(4)不适用于单调缺乏纹理的场景;(天空、白墙、沙漠)

(5)相机基线限制了测量范围。(基线越大,测量范围越远;基线越小,测量范围越近)

编辑:jq

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 数据库
    +关注

    关注

    7

    文章

    3591

    浏览量

    63371
  • 代码
    +关注

    关注

    30

    文章

    4555

    浏览量

    66772
  • 测距
    +关注

    关注

    2

    文章

    90

    浏览量

    19398

原文标题:检测三维物体?一篇文章认识《双目立体视觉》

文章出处:【微信号:vision263com,微信公众号:新机器视觉】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    三维视觉测量技术:被动视觉测量和主动视觉测量

    与人眼的立体感知类似,双目立体视觉用两个相机从不同的角度对被测物体成像。依据两幅图像中对应点的立体视差( stereo disparity) ,根据三角测量原理实现三维信息测量。
    的头像 发表于 01-03 11:30 311次阅读
    三维<b class='flag-5'>视觉</b>测量技术:被动<b class='flag-5'>视觉</b>测量和主动<b class='flag-5'>视觉</b>测量

    双目立体视觉是什么样的技术?

    双眼视物时,主观上可产生被视物体的厚度以及空间的深度或距离等感觉,称为立体视觉(stereopsis)。其主要原因是同一被视物体在两眼视网膜上的像并不完全相同,左眼从左方看到物体的左侧面较多,而右眼则从右方看到物体的右侧面较多。
    的头像 发表于 12-28 17:08 425次阅读
    <b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>是什么样的技术?

    新品双目测宽仪测量原理 宽厚板材在线检测

    相机就像人的双眼,可以形成立体视觉,这样就可以得到足够的信息判断被测物的距离,修正和消除距离变化对测量的影响。 双目测宽仪是新研发的种宽度检测设备,采用立体机器
    发表于 11-20 17:25

    立体视觉系统的设计方案

    电子发烧友网站提供《立体视觉系统的设计方案.pdf》资料免费下载
    发表于 11-06 10:17 0次下载
    <b class='flag-5'>立体视觉</b>系统的设计方案

    三维立体视觉之三维恢复方法

    电子发烧友网站提供《三维立体视觉之三维恢复方法.doc》资料免费下载
    发表于 11-03 09:31 0次下载
    三维<b class='flag-5'>立体视觉</b>之三维恢复方法

    LiDAR和立体视觉摄像头如何处理低光

    的距离传感解决方案,尽管性能存在显着差异,特别是在恶劣的天气和道路条件下。 Nodar是AV先进立体视觉技术的提供商,最近进行了一系列面对面的性能测试,以比较 LiDAR 和立体视觉摄像头如何处理低光,黑暗和恶劣天气条件,以及检测道路上的
    的头像 发表于 10-13 15:33 260次阅读

    关于双目立体视觉的三大基本算法及发展现状

    双目立体视觉一直是机器视觉研究领域的发展热点和难点,“热”是因为双目立体视觉有着及其广阔的应用前景,且随着光学、计算机科学等学科的不断发展
    的头像 发表于 08-25 17:28 1421次阅读
    关于<b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>的三大基本算法及发展现状

    双目立体视觉是什么?单目视觉双目立体视觉的区别?

    双目更多的是基于物理测量,而单目视觉则是基于逻辑推理,通过大量的数据训练,先识别出目标,再根据目标的大小和高度估算距离。因此,单目视觉的漏检率高于双目
    发表于 08-17 09:40 2531次阅读
    <b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>是什么?单目<b class='flag-5'>视觉</b>与<b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>的区别?

    双目立体视觉原理 HALCON的双目视觉系统研究

      立体视觉技术是机器人技术研究中最为活跃的一个分支,是智能机器人的重要标志。双目立体视觉是通过对同一目标的两幅图像提取、识别、匹配和解释,进行三维环境信息的重建。其过程主要包括视频捕获、摄像机定标
    发表于 07-19 14:18 0次下载

    双目立体视觉理论及应用

    采用立体视觉,不需要红外传感器、声波定位仪、激光雷达等测距传感器,可大大降低了技术解决方案的成本。
    发表于 07-19 12:41 476次阅读
    <b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>理论及应用

    如何通过立体视觉构建小巧轻便的深度感知系统

    在本文中,我们首先介绍了立体视觉系统的主要部分,并提供了有关使用硬件组成和开源软件制作定制立体相机的说明。由于此设置专注于嵌入式系统,因此它将实时计算任何场景的深度图,而无需电脑主机。
    的头像 发表于 07-13 16:49 441次阅读
    如何通过<b class='flag-5'>立体视觉</b>构建小巧轻便的深度感知系统

    几种经典的双目匹配的算法

    matching)复杂,对计算资源消耗很大。那我们介绍下几种经典的双目匹配的算法。 【双目匹配】 双目立体视觉理论建立在对人类视觉系统研究
    的头像 发表于 07-04 11:33 1730次阅读
    几种经典的<b class='flag-5'>双目</b>匹配的算法

    双目立体视觉三大算法原理及其代码实现

    双目立体视觉中常用的基于区域的局部匹配准则主要有图像序列中对应像素差的绝对值之和SAD(sum of absolute differences)、对应像素差的平方之和SSD(sum of squared differences)及半全局匹配算法SGM(semi—globa
    发表于 07-01 09:34 1247次阅读
    <b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>三大算法原理及其代码实现

    边缘AI套件上的立体视觉深度感知

    电子发烧友网站提供《边缘AI套件上的立体视觉深度感知.zip》资料免费下载
    发表于 06-12 14:36 0次下载
    边缘AI套件上的<b class='flag-5'>立体视觉</b>深度感知

    检测三维物体?一篇文章认识双目立体视觉

    由于两个镜头共用一个设备ID,打开摄像头时使用cv2.VideoCapture()函数,只需打开一次。区别有的双目摄像头是左右镜头各用一个设备ID,需要打开两次cv2.VideoCapture(0),cv2.VideoCapture(1)。
    的头像 发表于 06-01 14:54 559次阅读
    检测三维物体?一篇文章<b class='flag-5'>认识</b>《<b class='flag-5'>双目</b><b class='flag-5'>立体视觉</b>》