0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

为打破光刻胶垄断,我国冰刻2.0技术获突破

如意 来源:快科技 作者:雪花 2020-12-08 10:53 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

光刻胶是微纳加工过程中非常关键的材料。有专家表示,中国要制造芯片,光有光刻机还不够,还得打破国外对“光刻胶”的垄断。

日前,西湖大学仇旻研究团队在《纳米快报》《纳米尺度》《应用表面科学》等期刊上连续发表一系列研究成果,雕刻小到微米甚至纳米级别的“冰雕”游刃有余,从精确定位到精准控制雕刻力度,再到以“冰雕”为模具制作结构、加工器件,一套以“wafer in, device out”(原料进,成品出)为目标的“冰刻2.0”三维微纳加工系统雏形初现。

这个研发带来显然极具前景,为何这样说呢?零下140摄氏度左右的真空环境,能让水蒸气凝华成无定形冰。“无常形”的水蒸气可以包裹任意形状的表面,哪怕是极小的样品也没有问题;水蒸气轻若无物,使在脆弱材料上加工变成可能。对应“光刻胶”,他们给这层水冰起名“冰胶”,给冰胶参与的电子束光刻技术起名“冰刻”。

实际上,一旦将光刻胶换成了冰胶,还能够极大地简化加工流程,规避洗胶带来的污染,以及难以洗净的光刻胶残留导致良品率低等问题。“冰刻”只需要让冰融化或升华成水蒸气即可,仿佛这层冰胶不曾存在过一样。

上述团队在最新发表的文章结尾,他们用一种非常科幻的方式展望了“冰刻”的未来。毫无疑问,未来围绕“冰刻”的研究,将聚焦于传统“光刻”能力无法企及的领域。

受益于水这种物质得天独厚的生物相容性,在生物样本上“冰刻”光子波导或电子电路有望得以实现。
责编AJX

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光刻胶材
    +关注

    关注

    0

    文章

    5

    浏览量

    6664
  • 光刻胶
    +关注

    关注

    10

    文章

    348

    浏览量

    31552
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    中国打造自己的EUV光刻胶标准!

    其他工艺器件的参与才能保障芯片的高良率。   以光刻胶例,这是决定芯片 图案能否被精准 刻下来的“感光神经膜”。并且随着芯片步入 7nm及以下先进制程芯片 时代,不仅需要EUV光刻机,更需要EUV
    的头像 发表于 10-28 08:53 5862次阅读

    国产光刻胶重磅突破:攻克5nm芯片制造关键难题

    电子发烧友网综合报道 近日,我国半导体材料领域迎来重大突破。北京大学化学与分子工程学院彭海琳教授团队及合作者通过冷冻电子断层扫描技术,首次在原位状态下解析了光刻胶分子在液相环境中的微观
    的头像 发表于 10-27 09:13 5775次阅读
    国产<b class='flag-5'>光刻胶</b>重磅<b class='flag-5'>突破</b>:攻克5nm芯片制造关键难题

    光刻胶剥离工艺

    光刻胶剥离工艺是半导体制造和微纳加工中的关键步骤,其核心目标是高效、精准地去除光刻胶而不损伤基底材料或已形成的结构。以下是该工艺的主要类型及实施要点:湿法剥离技术有机溶剂溶解法原理:使用丙酮、NMP
    的头像 发表于 09-17 11:01 1002次阅读
    <b class='flag-5'>光刻胶</b>剥离工艺

    光刻胶旋涂的重要性及厚度监测方法

    在芯片制造领域的光刻工艺中,光刻胶旋涂是不可或缺的基石环节,而保障光刻胶旋涂的厚度是电路图案精度的前提。优可测薄膜厚度测量仪AF系列凭借高精度、高速度的特点,
    的头像 发表于 08-22 17:52 1396次阅读
    <b class='flag-5'>光刻胶</b>旋涂的重要性及厚度监测方法

    国产光刻胶突围,日企垄断终松动

      电子发烧友网综合报道 光刻胶作为芯片制造光刻环节的核心耗材,尤其高端材料长期被日美巨头垄断,国外企业对原料和配方高度保密,我国九成以上光刻胶
    的头像 发表于 07-13 07:22 5685次阅读

    行业案例|膜厚仪应用测量之光刻胶厚度测量

    光刻胶生产技术复杂、品种规格多样,在电子工业集成电路制造中,对其有着极为严格的要求,而保证光刻胶产品的厚度便是其中至关重要的一环。 项目需求  本次项目旨在测量光刻胶厚度,
    的头像 发表于 07-11 15:53 360次阅读
    行业案例|膜厚仪应用测量之<b class='flag-5'>光刻胶</b>厚度测量

    针对晶圆上芯片工艺的光刻胶剥离方法及白光干涉仪在光刻图形的测量

    引言 在晶圆上芯片制造工艺中,光刻胶剥离是承上启下的关键环节,其效果直接影响芯片性能与良率。同时,光刻图形的精确测量是保障工艺精度的重要手段。本文将介绍适用于晶圆芯片工艺的光刻胶剥离方法,并探讨白光
    的头像 发表于 06-25 10:19 732次阅读
    针对晶圆上芯片工艺的<b class='flag-5'>光刻胶</b>剥离方法及白光干涉仪在<b class='flag-5'>光刻</b>图形的测量

    用于 ARRAY 制程工艺的低铜腐蚀光刻胶剥离液及白光干涉仪在光刻图形的测量

    引言 在显示面板制造的 ARRAY 制程工艺中,光刻胶剥离是关键环节。铜布线在制程中广泛应用,但传统光刻胶剥离液易对铜产生腐蚀,影响器件性能。同时,光刻图形的精准测量对确保 ARRAY 制程工艺精度
    的头像 发表于 06-18 09:56 619次阅读
    用于 ARRAY 制程工艺的低铜腐蚀<b class='flag-5'>光刻胶</b>剥离液及白光干涉仪在<b class='flag-5'>光刻</b>图形的测量

    低含量 NMF 光刻胶剥离液和制备方法及白光干涉仪在光刻图形的测量

    引言 在半导体制造过程中,光刻胶剥离液是不可或缺的材料。N - 甲基 - 2 - 吡咯烷酮(NMF)虽在光刻胶剥离方面表现出色,但因其高含量使用带来的成本、环保等问题备受关注。同时,光刻图形的精准
    的头像 发表于 06-17 10:01 600次阅读
    低含量 NMF <b class='flag-5'>光刻胶</b>剥离液和制备方法及白光干涉仪在<b class='flag-5'>光刻</b>图形的测量

    减少光刻胶剥离工艺对器件性能影响的方法及白光干涉仪在光刻图形的测量

        引言   在半导体制造领域,光刻胶剥离工艺是关键环节,但其可能对器件性能产生负面影响。同时,光刻图形的精确测量对于保证芯片制造质量至关重要。本文将探讨减少光刻胶剥离工艺影响的方法,并介绍白光
    的头像 发表于 06-14 09:42 663次阅读
    减少<b class='flag-5'>光刻胶</b>剥离工艺对器件性能影响的方法及白光干涉仪在<b class='flag-5'>光刻</b>图形的测量

    光刻胶产业国内发展现状

    如果说最终制造出来的芯片是一道美食,那么光刻胶就是最初的重要原材料之一,而且是那种看起来可能不起眼,但却能决定一道菜味道的关键辅料。 光刻胶(photoresist),在业内又被称为光阻或光阻剂
    的头像 发表于 06-04 13:22 672次阅读

    光刻胶剥离液及其制备方法及白光干涉仪在光刻图形的测量

    引言 在半导体制造与微纳加工领域,光刻胶剥离液是光刻胶剥离环节的核心材料,其性能优劣直接影响光刻胶去除效果与基片质量。同时,精准测量光刻图形对把控工艺质量意义重大,白光干涉仪为此提供了
    的头像 发表于 05-29 09:38 990次阅读
    <b class='flag-5'>光刻胶</b>剥离液及其制备方法及白光干涉仪在<b class='flag-5'>光刻</b>图形的测量

    光刻胶的类型及特性

    光刻胶类型及特性光刻胶(Photoresist),又称光致抗蚀剂,是芯片制造中光刻工艺的核心材料。其性能直接影响芯片制造的精度、效率和可靠性。本文介绍了光刻胶类型和
    的头像 发表于 04-29 13:59 6965次阅读
    <b class='flag-5'>光刻胶</b>的类型及特性

    晶圆表面光刻胶的涂覆与刮边工艺的研究

    随着半导体器件的应用范围越来越广,晶圆制造技术也得到了快速发展。其中,光刻技术在晶圆制造过程中的地位尤为重要。光刻胶光刻工艺中必不可少的材
    的头像 发表于 01-03 16:22 1131次阅读

    光刻胶成为半导体产业的关键材料

    光刻胶是半导体制造等领域的一种重要材料,在整个电子元器件加工产业有着举足轻重的地位。 它主要由感光树脂、增感剂和溶剂等成分组成。其中,感光树脂决定了光刻胶的感光度和分辨率等关键性能,增感剂有助于提高
    的头像 发表于 12-19 13:57 1802次阅读