0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

不同成分电解液对硅负极表面成膜的影响及其作用机理

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2020-11-13 17:21 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

目前市场上锂离子电池使用的多为石墨负极材料,从石墨的比容量和压实密度看,负极材料的能量密度很难再得到提高。与石墨负极相比,硅基负极材料的能量密度优势明显。石墨的理论比容量为372mAh/g,而硅基负极材料的理论比容量超过其10倍,高达4200mAh/g。硅碳复合材料能够大大提升单体电芯的比容量,增加电动汽车续航里程。

硅基负极材料也存在着较为明显的缺点,主要有以下两方面:其一是硅颗粒在脱嵌锂时伴随着体积膨胀和收缩而导致颗粒粉化、脱落,造成结构坍塌,最终导致电极活性物质与集流体脱离;其二是硅颗粒表面固体电解质层(SEI)的持续生长对电解液以及来自正极的锂源的不可逆消耗。由于硅基负极材料的体积效应,硅在电解液中难以形成稳定的固体电解质界面膜。伴随着电极结构的破坏,在暴露出的硅表面不断形成新的SEI膜,加剧了硅的腐蚀和容量衰减。因此,为了提高硅基负极材料的电化学性能,系统研究电解液添加剂在硅负极表面的作用机理是十分必要和迫切的。

本文针对硅基负极材料的特点,研究不同成分电解液对硅负极表面成膜的影响及其作用机理,通过不同添加剂的配合使用提升硅碳负极的电化学性能。选用膨胀相对较小的氧化亚硅(SiO)混掺石墨作为负极材料,对SiO-C/Li扣式半电池进行充放电测试、成膜机理及形貌分析、NCM/SiO-C软包电池常温循环测试。

一、实验

1.1 极片制作

正极:以镍钴锰(NCM)三元材料为正极材料,使用油系PVDF为正极粘结剂,导电剂使用Super-P, 使用吡咯烷酮(NMP)为溶剂,按照一定比例混合成正极电极浆料。

负极:以SiO混合石墨制成硅碳负极,使用水系SBR为负极粘结剂,导电剂使用Super-P,使用蒸馏水为溶剂,按照一定比例混合成负极电极浆料。

将正负极浆料分别均匀涂覆在铝箔、铜箔表面上烘干,经过碾压、裁切、烘干,制成实验所需极片。

1.2 扣式电池制作

在充满氩气的手套箱中组装SiO-C/Li半电池,其中金属锂片为电池级(上海产),滴入适量电解液,加入隔膜,制成扣式电池,型号为CR2032。电解液溶剂组分为EC∶EMC=1∶1,添加剂为VC、FEC、LiPO2F2(具体配比见表1)。

表1 三种电解液成分对比

1.3 软包电池制作

以NCM极片为正极片,SiO质量分数为5%的SiO-C极片为负极片,极片经制片、卷绕、注液、预处理、铝塑膜封口等,制作出软包电池,标称容量为4Ah。

1.4 性能测试

1.4.1 扣式电池测试

SiO-C/Li半电池:极片在恒温真空干燥箱中干燥12h,于手套箱中组成正极半电池,电池型号为CR2032,在手套箱中封口取出,25℃常温下静置12h后待用。以0.05C恒流充放电进行容量标定。

1.4.2 成膜测试

SiO-C/Li扣式半电池以0.01C恒流放电, 截止电压为0.005V,静置10min。

1.4.3 循环测试

软包电池循环测试流程:1C恒流充电至4.2V,恒压充电至截止电流为0.005C,静置10min,1C恒流放电至电压降为3V,静置10min,以此做充放电循环测试。

1.5 测试设备

容量和循环性能测试采用Arbin BT2000电池测试系统。用扫描电镜对循环后硅碳负极片表面微观形貌进行观察,扫描电镜为日本电子公司JSM-6360LV型。

二、结果与讨论

2.1 添加剂对硅负极容量的影响

扣式电池采用三种电解液配方(电解液配方见表1)。测试电池电性能,不同电解液体系下扣式电池首次充放电比容量及首次库仑效率对比见表2。

表2 三种电解液样品电池充放电比容量对比

扣式半电池循环5次后,在手套箱中将其负极片取出,用流动的EMC进行冲洗,清洗后待EMC挥发完全后,将极片装入自封袋中,进行后续硅碳负极形貌扫描。从表2硅碳负极放电比容量测试结果可以看出,加入5%的SiO可以有效提高负极比容量,3#电解液体系比容量可以达到395.73mAh/g,说明3#添加剂在负极片上成膜更为完全、致密,成膜阻抗更低,有利于降低不可逆容量损失。三种电解液首次库仑效率排序如下:3#>1#>2#, 其中1#电解液和2#电解液对硅碳负极的比容量和首次库仑效率影响差别不大。

图1 不同电解液体系循环后硅碳负极表面形貌图

图1为不同电解液体系作用下硅碳负极表面形貌图,图中白色颗粒为SiO,灰色颗粒为石墨颗粒。从三张图片中均可看出,当SiO-C/Li扣式半电池循环5次后,硅碳负极片表面已经明显生成裂纹,这是由于在电化学循环过程中,锂离子的嵌入和脱出会使硅材料体积发生膨胀与收缩,产生的机械作用力会使材料结构变化,甚至坍塌。因此,随着循环的进行,硅颗粒周边易形成缝隙,从形貌上来看,即表现为极片裂缝。这些裂痕的形成将造成极片表面SEI膜破裂, 电池循环寿命下降等问题。

2.2 添加剂成膜机理分析

使用SiO-C/Li扣式半电池以0.01C缓慢放电,并对放电曲线做微分,观察电解液中添加剂在硅碳负极表面的成膜现象及作用机理,SiO-C体系0.01C放电曲线见图2,放电曲线微分图见图3。

图2 硅碳负极体系扣式电池0.01C放电曲线

从图2中可以看出随着放电的进行将存在一个微小的放电平台,其中以3#曲线最为明显,开始时间较早,说明添加剂在此处有成膜反应,但1#和2#电解液无法从放电曲线上对成膜电位进行准确判断。图3为SiO-C/Li扣式电池放电曲线的dQ/dV曲线,将放电曲线微分后,可以将电极表面 的成膜反应放大,便于分析添加剂作用机理,其中图3(b)为图3(a)中Y轴小量程放大图。

图3 硅碳负极体系放电曲线微分图

从图3(b)中可以准确判断成膜峰的位置及峰面积大小,三种添加剂成膜电位汇总为表3。结合图3(b)和表3可以看出,LiPO2F2的成膜电位为2.4V,成膜反应开始最早,同时成膜峰与其他两种电解液相比峰面积更大,主峰振幅的大小可以反映出成膜反应的强弱,说明此种添加剂组合成膜反应更完全、更致密,成膜能力更强。

表3 三种电解液成膜电位对比

2#电解液中成膜添加剂为FEC,说明FEC的成膜电位为1.9V,在3#电解液中同样含有同比例的FEC,在微分曲线中同一位置也可以明显看到成膜峰,再次验证了FEC在此位置可发生成膜反应。而1#电解液中的添加剂VC成膜最晚,成膜电位为1.1V,在硅碳负极体系中成膜能力最弱。对比三种电解液成膜电位可以看出,LiPO2F2最易在硅碳负极表面成膜,三种添加剂成膜能力排序为LiPO2F2>FEC>VC。由于电极表面所成SEI膜的质量直接关系到电池循环寿命, 因此从图3的微分曲线所反应的成膜反应强弱可以对硅碳体系软包电池循环效果进行预测。鉴于3#电解液成膜开始电位最早,成膜峰面积最大,因此推测3#电解液中LiPO2F2+FEC的添加剂组合在硅碳负极表面进行的成膜反应最完全、成膜最致密,电极表面SEI膜包覆良好,因此循环寿命更长。循环性能推测依次为含有FEC的2#电解液,以及1#电解液。

2.3 NCM/SiO-C软包电池循环测试

NCM/SiO-C软包电池进行1C恒流充放电测试,循环测试结果见图4。从图4中可以看出,3#电解液体系循环趋势平稳,容量保持率较高,200次循环后容量保持率为90.29%,按此趋势,循环寿命可达600次(80%容量剩余)。其次为2# 电解液,50次循环后即与3#呈现出较大差异,1#电解液循环趋势下降更为明显。

图4 三种电解液电池循环测试图

将图4所展示的循环效果与图3的电解液成膜机理分析相结合可以看出,本文从成膜反应强度预测出的循环效果与实测情况完全一致。因此,从添加剂成膜机理可对电池循环性能进行预测, 这也为电解液效果筛选提供了一种快捷有效的方法。同时,从图4可以看出,电解液添加剂对于硅碳负极体系循环寿命有着显著的影响,对于体系中成膜添加剂种类和用量的选择仍需更为深入和系统的研究。

三、结论

本文针对硅碳负极材料的特性,考察了不同电解液组分在其表面的成膜作用及机理。通过对电池容量的标定可以看出,硅的加入可以有效地提高负极比容量,含有5%SiO负极实际比容量可以达到395.73mAh/g。LiPO2F2+FEC的添加剂组合可以将电池首次库仑效率提高至89.21%,并且具有更强的成膜能力,可以显著提高硅碳负极电池的循环寿命。随着电动汽车市场的不断发展,高能量密度的材料对提高电动车的续航里程起到绝定性的作用,硅基负极材料以其明显的能量密 度优势必将成为未来动力电池发展的重要方向,存在着巨大的应用潜力。

责任编辑:xj

原文标题:电解液添加剂在硅碳负极体系中作用机理研究

文章出处:【微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 电解液
    +关注

    关注

    10

    文章

    875

    浏览量

    23718
  • 电池
    +关注

    关注

    85

    文章

    11370

    浏览量

    141332
  • 硅碳负极
    +关注

    关注

    0

    文章

    10

    浏览量

    5758

原文标题:电解液添加剂在硅碳负极体系中作用机理研究

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    新能源储能电解液怎么选择位传感器?

    电解液大多具有强腐蚀性、高导电性,部分还存在挥发性强、对洁净度要求高的特点,这使得位传感器选型需重点攻克 防腐蚀、防污染、适配工况精度三大核心难题。选型时需先明确电解液特性与使用场景,再从传感器类型、材质、防护性能等维度筛选
    的头像 发表于 11-24 15:17 798次阅读

    新能源储能电解液高压输送与充装系统的安全核心

    在大容量新能源储能系统(如百兆瓦级液流电池储能电站)中,电解液需通过高压输送(压力通常0.5-2MPa)实现快速循环与充装,以满足系统高功率输出需求。高压环境下,电解液的流动性、介电特性发生变化,且
    的头像 发表于 11-21 16:57 1816次阅读

    新能源储能电解液在线再生循环的动态监测核心

    为提升新能源储能系统的经济性与环保性,电解液在线再生与循环利用技术逐渐成为行业研究热点。该技术通过在储能系统运行过程中,对性能衰减的电解液进行实时净化、成分修复与浓度调整,实现电解液
    的头像 发表于 11-20 18:07 1790次阅读

    退役储能电解液回收处理环节的环保监测关键-电容式位传感器

    随着新能源储能系统规模化应用,退役电解液的回收处理成为保障环境安全、实现资源循环的重要环节。退役电解液成分复杂,含有重金属离子、腐蚀性盐类及有机杂质,且不同类型储能电池(如锂电池、液流电池)的退役
    的头像 发表于 11-18 16:42 1188次阅读
    退役储能<b class='flag-5'>电解液</b>回收处理环节的环保监测关键-电容式<b class='flag-5'>液</b>位传感器

    冠坤电解电容的 “长寿密码”:特制抗干涸电解液,家用设备可服役 12 年 +

    在电子元器件领域,电解电容的寿命一直是制约设备可靠性的关键因素。冠坤电子通过自主研发的特制抗干涸电解液技术,成功将电解电容的工作寿命提升至12年以上,这项突破性技术正在重新定义家用电器和工业设备
    的头像 发表于 09-02 15:41 533次阅读

    电解电容的 “环保转身”:无汞电解液如何让它从 “电子垃圾” 变 “可回收物”?

    的突破,正在彻底改变这一局面,使其从环境负担转变为可回收资源。这一转变不仅关乎单个元器件的革新,更折射出整个电子产业向绿色可持续发展转型的大趋势。 传统铝电解电容的环境困境主要源于其电解液成分。汞作为
    的头像 发表于 08-19 17:04 551次阅读
    铝<b class='flag-5'>电解</b>电容的 “环保转身”:无汞<b class='flag-5'>电解液</b>如何让它从 “电子垃圾” 变 “可回收物”?

    影响电解电容寿命的主要因素及其详细分析

    电解电容的寿命受多种因素影响,这些因素相互作用,共同决定了电容在实际使用中的可靠性和稳定性。以下是影响电解电容寿命的主要因素及其详细分析: 一、核心影响因素:温度 高温加速老化 化学机
    的头像 发表于 08-08 16:15 1238次阅读

    锂离子电池电解液浸润机制解析:从孔隙截留到工艺优化

    在锂离子电池制造领域,美能光子湾始终怀揣着推动清洁能源时代加速到来的宏伟愿景,全力助力锂离子电池技术的革新。在锂离子电池制造过程中,电解液浸润是决定电池性能、循环寿命和安全性的关键步骤。然而,由于
    的头像 发表于 08-05 17:49 1861次阅读
    锂离子电池<b class='flag-5'>电解液</b>浸润机制解析:从孔隙截留到工艺优化

    电解电容会容量衰减下降的原因

    导致铝箔表面氧化无法充分接触,使极板有效面积减小。例如,某汽车电子厂商测试发现,在105℃环境下工作的470μF/25V电容,运行2000小时后容量衰减达15%,其中电解液蒸发贡献率超过60%。此外,
    的头像 发表于 08-01 15:36 816次阅读

    攻克锂电池研发痛点-电解液浸润量化表征

    加快,低温环境下显著减慢 解决方案: 调整电解液配方,优化温度适应性 利用宽域温控功能(-20℃~80℃)模拟极端工况,指导材料选型 石墨负极片实验 痛点:生产缺陷(如褶皱)导致电解液浸润不均,引发
    发表于 07-14 14:01

    非接触式位传感器精准检测电解液位优选方案

    在现代化工业生产中,电解液位检测是一项至关重要的任务,其准确性直接关系到设备的稳定运行和产品质量。传统接触式位传感器由于直接接触电解液,容易受到腐蚀、污染和粘附等问题,从而导致测量
    的头像 发表于 04-12 10:53 1057次阅读
    非接触式<b class='flag-5'>液</b>位传感器精准检测<b class='flag-5'>电解液</b><b class='flag-5'>液</b>位优选方案

    切割润湿剂用哪种类型?

    18144379175 如何选择适合的晶切割用润湿剂 兼容性 :要与晶切割的主要成分,如聚乙二醇等高分子聚合物充分相容,不产生分层、
    发表于 02-07 10:06

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究

    强弱耦合型电解液调控超级电容器宽温域特性及其机制研究 Engineering electrolyte strong-weak coupling effect toward
    的头像 发表于 01-21 11:01 1608次阅读
    强弱耦合型<b class='flag-5'>电解液</b>调控超级电容器宽温域特性<b class='flag-5'>及其</b>机制研究

    试样表面清洁度对电线电缆耐电痕试验的影响

    成分会溶解在电解液中,增加了电解液的导电性,使得试样表面更容易形成漏电通道。 油脂类杂质同样会降低绝缘性能。油脂会在试样表面形成一层薄薄的油
    的头像 发表于 12-26 13:53 850次阅读
    试样<b class='flag-5'>表面</b>清洁度对电线电缆耐电痕试验的影响

    水系电解液宽电压窗口设计助力超长寿命水系钠离子电池

    【研究背景】水系钠离子电池(ASIBs)具有高安全、低成本、快速充电等优点,在大规模储能中显示出巨大的潜力。然而,传统的低浓度水系电解液(salt-in-water electrolytes
    的头像 发表于 12-20 10:02 2669次阅读
    水系<b class='flag-5'>电解液</b>宽电压窗口设计助力超长寿命水系钠离子电池