0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

科普—磁传感器

454398 来源:alpha007 作者:alpha007 2022-12-27 15:55 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

我们伟大中华祖先的四大发明之一——指南针,可谓是无人不知啊,对于现代传感器技术来讲,它可算得上是磁传感器的鼻祖了。

而在当今的电子时代,磁传感器在电机电力电子技术、汽车工业、工业自动控制、机器人、办公自动化、家用电器及各种安全系统等方面都有着广泛的应用。

磁传感器

磁传感器是一种把磁场、电流、应力应变、温度、光等外界因素引起的敏感元件磁性能变化转换成电信号,以这种方式来检测相应物理量的器件。用于感测速度、运动和方向,应用领域包括汽车、无线和消费电子、军事、能源、医疗和数据处理等。

磁传感器市场按照技术进步的发展,主要分为四大类:霍尔效应(Hall Effect)传感器、各向异性磁阻(AMR)传感器、巨磁阻(GMR)传感器隧道磁阻(TMR)传感器

其中,霍尔效应传感器的历史最悠久,获得广泛应用。随着持续的技术研发,各种磁传感器诞生,并拥有更优异的性能、更高的可靠性。

霍尔效应(Hall Effect)传感器
1879 年,美国物理学家霍尔在研究金属导电机制时发现了霍尔效应。但因金属的霍尔效应很弱而一直没有实际应用案例,直到发现半导体的霍尔效应比金属强很多,利用这种现象才制作了霍尔元件。

在半导体薄膜两端通以控制电流 I,并在薄膜的垂直方向施加磁感应强度为 B 的匀强磁场,半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场强度与洛伦兹力产生平衡之后,不再聚集,这个现象叫做霍尔效应。在垂直于电流和磁场的方向上,将产生的内建电势差,称为霍尔电压 U。

霍尔电压 U 与半导体薄膜厚度 d,电场 B 和电流 I 的关系为 U=k(IB/d)。这里 k 为霍尔系数,与半导体磁性材料有关。

霍尔传感器利用霍尔效应的原理制作,主要有霍尔线性传感器、霍尔开关和磁力计三种。

1. 线性型霍尔传感器由霍尔元件、线性放大器和射极跟随器组成,它输出模拟量。

线性型霍尔传感器工作原理

霍尔线性器件拥有很宽的磁场量测范围,并能识别磁极。其应用领域有电力机车、地下铁道、无轨电车、铁路等,还可用于变频器中用于监控电量、光伏直流柜监测光伏汇流箱实时输出电流的作用、电动机保护等。线性霍尔传感器还可以用于测量位置和位移,霍尔传感器可用于液位探测、水流探测等。

2. 开关型霍尔传感器由稳压器、霍尔元件、差分放大器,斯密特触发器和输出级组成,它输出数字量。

开关型霍尔传感器工作原理

霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高,工作温度范围宽,可达 -55℃~150℃。开关型霍尔传感经过一次磁场强度的变化,则完成了一次开关动作,输出数字信号,可以计算汽车或机器转速、ABS 系统中的速度传感器、汽车速度表和里程表、机车的自动门开关、无刷直流电动机、汽车点火系统、门禁和防盗报警器、自动贩卖机、打印机等。

3. 磁力计
是利用霍尔效应产生的电势差来测算外界磁场的大小和极性。磁力计是采用 CMOS 工艺的平面器件。工艺相对一般 IC 更为简单,一般采用 P 型衬底上 N 阱上形成传感器件,通过金属电极将传感器与其他电路(如放大器、调节处理器等)相连。

但这样设计的的霍尔传感器只能感知垂直于管芯表面的的磁场变化,因此增加了磁通集中器(magnetic flux concentrator),工艺上来讲就是做原来的管芯上增加一层坡莫合金,可探测平行于管芯方向的磁场。由此,霍尔传感器实现了从单轴到三轴磁力计的跨越式发展。

磁力计广泛应用于智能手机、平板电脑和导航设备等移动终端,拥有巨大的市场前景。同时,磁力计可以与加速度计组成 6 轴电子罗盘,三种惯性传感器(加上陀螺仪)组合在一起还能实现 9 轴组合传感器,构成更强大的惯性导航产品。

各向异性磁阻(AMR)传感器
某些金属或半导体在遇到外加磁场时,其电阻值会随着外加磁场的大小发生变化,这种现象叫做磁阻效应,磁阻传感器利用磁阻效应制成。

1857 年,Thomson 发现坡莫合金的的各向异性磁阻效应。对于有各向异性特性的强磁性金属, 磁阻的变化是与磁场和电流间夹角有关的。我们常见的这类金属有铁、钴、镍及其合金等。

当外部磁场与磁体内建磁场方向成零度角时, 电阻是不会随着外加磁场变化而发生改变的;但当外部磁场与磁体的内建磁场有一定角度的时候, 磁体内部磁化矢量会偏移,薄膜电阻降低, 我们对这种特性称为各向异性磁电阻效应(Anisotropic Magnetoresistive Sensor,简称 AMR)

坡莫合金的 AMR 效应

磁阻变化值与角度变化的关系

薄膜合金的电阻 R 就会因角度变化而变化,电阻与磁场特性是非线性的,且每一个电阻并不与唯一的外加磁场值成对应关系。当电流方向与磁化方向平行时,传感器最敏感,在电流方向和磁化方向成 45 度角度时,一般磁阻工作于线性区附近,这样可以实现输出的线性特性。

AMR 磁传感器的基本结构由四个磁阻组成了惠斯通电桥。其中供电电源为 Vb,电流流经电阻。当施加一个偏置磁场 H 在电桥上时,两个相对放置的电阻的磁化方向就会朝着电流方向转动,这两个电阻的阻值会增加;而另外两个相对放置的电阻的磁化方向会朝与电流相反的方向转动,该两个电阻的阻值则减少。通过测试电桥的两输出端输出差电压信号,可以得到外界磁场值。

AMR 磁阻传感器等效电路

各向异性磁阻(AMR)技术的优势有以下几点:

1. 各向异性磁阻(AMR)技术最优良性能的磁场范围是以地球磁场为中心,对于以地球磁场作为基本操作空间的传感器应用来说,具有广大的运作空间,无需像霍耳元件那样增加聚磁等辅助手段。

2. 各向异性磁阻(AMR)技术是唯一被验证,可以达到在地球磁场中测量方向精确度为一度的半导体工艺技术。其他可达到同样精度技术都是无法与半导体集成的工艺。因此,AMR 可与 CMOS 或 MEMS 集成在同一硅片上并提供足够的精确度。

3. AMR 技术只需一层磁性薄膜,工艺简单,成本低,不需要昂贵的制造设备,具有成本优势。

4. AMR 技术具有高频、低噪和高信噪比特性,在各种应用中尚无局限性。

AMR 磁阻传感器可以很好地感测地磁场范围内的弱磁场测量,制成各种位移、角度、转速传感器,各种接近开关,隔离开关,用来检测一些铁磁性物体如飞机、火车、汽车。其它应用包括各种导航系统中的罗盘,计算机中的磁盘驱动器,各种磁卡机、旋转位置传感、电流传感、钻井定向、线位置测量、偏航速率传感器和虚拟实景中的头部轨迹跟踪。

巨磁阻(GMR)传感器

与霍尔(Hall)传感器和各向异性磁阻(AMR)传感器相比,巨磁阻(GMR, Giant Magneto Resistance)传感器要年轻的多!这是因为 GMR 效应的发现比霍尔效应和 AMR 效应晚了 100 多年。

1988 年,德国科学家格林贝格尔发现了一特殊现象:非常弱小的磁性变化就能导致磁性材料发生非常显著的电阻变化。同时,法国科学家费尔在铁、铬相间的多层膜电阻中发现,微弱的磁场变化可以导致电阻大小的急剧变化,其变化的幅度比通常高十几倍。费尔和格林贝格尔也因发现巨磁阻效应而共同获得 2007 年诺贝尔物理学奖。

一般的磁铁金属,在加磁场和不加磁场下电阻率的变化为 1%~3%,但铁磁金属 / 非磁性金属 / 铁磁金属构成的多层膜,在室温下可以达到 25%,低温下更加明显,这也是巨磁阻效应的命名缘由。

“巨”(giant)来描述此类磁电阻效应,并非仅来自表观特性,还由于其形成机理不同。常规磁电阻源于磁场对电子运动的直接作用,呈各向异性磁阻,即电阻与磁化强度和电流的相对取向有关。相反,GMR 磁阻呈各向同性,与磁化强度和电流的相对取向基本无关。

巨磁阻效应仅依赖于相邻磁层的磁矩的相对取向,外磁场的作业只是为了改变相邻铁磁层的磁矩的相对取向。除此以外,GMR 效应更重要的意义是为进一步探索新物理——比如隧穿磁阻效应(TMR: Tunneling Magnetoresistance)、自旋电子学(Spintronics)以及新的传感器技术奠定了基础。

GMR 效应的首次商业化应用是 1997 年,由 IBM 公司投放市场的硬盘数据读取探头。到目前为止,巨磁阻技术已经成为全世界几乎所有电脑、数码相机、MP3 播放器的标准技术。

GMR 传感器的材料结构

具有 GMR 效应的材料主要有多层膜、颗粒膜、纳米颗粒合金薄膜、磁性隧道结合氧化物、超巨磁电阻薄膜等五种材料。其中自旋阀型多层膜的结构在当前的 GMR 磁阻传感器中应用比较广泛。

自旋阀主要有自由层(磁性材料 FM),隔离层(非磁性材料 NM),钉扎层(磁性材料 FM)和反铁磁层(AF)四层结构。

自旋阀 GMR 磁阻传感器基本结构

GMR 磁阻传感器由四个巨磁电阻构成惠斯通电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。当相邻磁性层磁矩平行分布,两个 FM/NM 界面呈现不同的阻态,一个界面为高阻态,一个界面为低阻态,自旋的传导电子可以在晶体内自由移动,整体上器件呈现低阻态;而当相邻磁性层磁矩反平行分布,两种自旋状态的传导电子都在穿过磁矩取向与其自旋方向相同的一个磁层后,遇到另一个磁矩取向与其自旋方向相反的磁层,并在那里受到强烈的散射作用,没有哪种自旋状态的电子可以穿越 FM/NM 界面,器件呈现高阻态。

GMR 磁阻传感器商业化时间晚于霍尔传感器和 AMR 磁阻传感器,制造工艺相对复杂,生产成本也较高。但其具有灵敏度高、能探测到弱磁场且信号好,温度对器件性能影响小等优点,因此市场占有率呈稳定状态。GMR 磁阻传感器在消费电子、工业、国防军事及医疗生物方面均有所涉及。

隧道磁阻(TMR)传感器
早在 1975 年,Julliere 就在 Co/Ge/Fe 磁性隧道结(MagneticTunnelJunctions,MTJs)中观察到了 TMR(Tunnel Magneto-Resistance)效应。但是,这一发现当时并没有引起人们的重视。在此后的十几年里,有关 TMR 效应的研究进展十分缓慢。在 GMR 效应的深入研究下,同为磁电子学的 TMR 效应才开始得到重视。2000 年,MgO 作为隧道绝缘层的发现为 TMR 磁阻传感器的发展契机。

2001 年,Butler 和 Mathon 各自做出理论预测:以铁为铁磁体和 MgO 作为绝缘体,隧道磁电阻率变化可以达到百分之几千。同年,Bowen 等首次用实验证明了磁性隧道结(Fe/MgO/FeCo)的 TMR 效应。2008 年,日本东北大学的 S. Ikeda, H. Ohno 团队实验发现磁性隧道结 CoFeB/MgO/CoFeB 的电阻率变化在室温下达到 604%,在 4.2K 温度下将超过 1100%。TMR 效应具有如此大的电阻率变化,因此业界越来越重视 TMR 效应的研究和商业产品开发。

TMR 元件在近年才开始工业应用的新型磁电阻效应传感器,其利用磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的 AMR 元件和 GMR 元件具有更大的电阻变化率。我们通常也用磁隧道结(Magnetic Tunnel Junction,MTJ)来代指 TMR 元件,MTJ 元件具有更好的温度稳定性,更高的灵敏度,更低的功耗,更好的线性度,相对于霍尔元件不需要额外的聚磁环结构,相对于 AMR 元件不需要额外的 set/reset 线圈结构。

TMR 磁阻传感器的材料结构及原理

从经典物理学观点看来,铁磁层(F1)+绝缘层(I)+铁磁层(F2)的三明治结构根本无法实现电子在磁层中的穿通,而量子力学却可以完美解释这一现象。当两层铁磁层的磁化方向互相平行,多数自旋子带的电子将进入另一磁性层中多数自旋子带的空态,少数自旋子带的电子也将进入另一磁性层中少数自旋子带的空态,总的隧穿电流较大,此时器件为低阻状态;

当两层的磁铁层的磁化方向反平行,情况则刚好相反,即多数自旋子带的电子将进入另一磁性层中少数自旋子带的空态,而少数自旋子带的电子也进入另一磁性层中多数自旋子带的空态,此时隧穿电流较小,器件为高阻状态。

可以看出,隧道电流和隧道电阻依赖于两个铁磁层磁化强度的相对取向,当磁化方向发生变化时,隧穿电阻发生变化,因此称为隧道磁电阻效应。

TMR 磁化方向平行和反平行时的双电流模型

TMR 元件在近年才开始工业应用的新型磁电阻效应传感器,其利用磁性多层膜材料的隧道磁电阻效应对磁场进行感应,比之前所发现并实际应用的 AMR 元件和 GMR 元件具有更大的电阻变化率。我们通常也用磁隧道结(Magnetic Tunnel Junction,MTJ)来代指 TMR 元件,MTJ 元件具有更好的温度稳定性,更高的灵敏度,更低的功耗,更好的线性度,相对于霍尔元件不需要额外的聚磁环结构,相对于 AMR 元件不需要额外的 set/reset 线圈结构。

下表是霍尔元件、AMR 元件、GMR 元件以及 TMR 元件的技术参数对比,可以更清楚直观的看到各种技术的优劣。

霍尔元件、AMR 元件、GMR 元件以及 TMR 元件的技术参数对比

作为 GMR 元件的下一代技术,TMR(MTJ)元件已完全取代 GMR 元件,被广泛应用于硬盘磁头领域。相信 TMR 磁传感技术将在工业、生物传感、磁性随机存储(Magnetic Random Access Memory,MRAM)等领域有极大的发展与贡献。

磁传感器的发展,在本世纪 70~80 年代形成高潮。90 年代是已发展起来的这些磁传感器的成熟和完善的时期。

磁传感器的应用十分广泛,已在国民经济、国防建设、科学技术、医疗卫生等领域都发挥着重要作用,成为现代传感器产业的一个主要分支。在传统产业应用和改造、资源探查及综合利用、环境保护、生物工程、交通智能化管制等各个方面,它们发挥着愈来愈重要的作用。

审核编辑黄昊宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 传感器
    +关注

    关注

    2574

    文章

    54382

    浏览量

    786149
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    致伸缩位移传感器输出信号

    致伸缩位移传感器通过改进电路设计实现高精度输出,支持多种信号类型,具有快速刷新频率、低纹波和抗干扰特性。
    的头像 发表于 09-07 14:43 681次阅读
    <b class='flag-5'>磁</b>致伸缩位移<b class='flag-5'>传感器</b>输出信号

    机器人竞技幕后:传感器芯片激活 “精准感知力”

    2025 世界人形机器人运动会于 8 月 17 日圆满收官,赛场上机器人在跑步、跳跃、抓取等项目中的精彩表现,背后是运动控制、环境感知等技术的迭代升级。而在这些技术中,传感器芯片凭借独特优势,成为
    发表于 08-26 10:02

    通门电流传感器

    通门电流传感器的工作原理是基于易饱和芯(如铁或镍合金、坡莫合金等)的特性,用激励使之交变饱和,利用该交变磁场的饱和效应测量外部电流磁场的变化。如下图通门电流
    的头像 发表于 08-13 16:14 1078次阅读
    <b class='flag-5'>磁</b>通门电流<b class='flag-5'>传感器</b>

    无线门传感器核心工作原理

    LoRaWAN无线门传感器,其利用门分离感应原理,实时监控门窗开/合状态并通过无线 LoRaWAN通信技术实现远程告警。除了使用LoRaWAN低功耗技术,该传感器还内置1200毫安
    的头像 发表于 08-04 08:50 667次阅读
    无线门<b class='flag-5'>磁</b><b class='flag-5'>传感器</b>核心工作原理

    致伸缩位移传感器在大坝监测的应用

    致伸缩位移传感器在大坝监测中应用广泛,实现高精度、实时监测,保障大坝安全。
    的头像 发表于 07-27 10:33 478次阅读
    <b class='flag-5'>磁</b>致伸缩位移<b class='flag-5'>传感器</b>在大坝监测的应用

    新型传感器技术@Melexis

    Triaxis是一种创新型传感器技术,通过单个传感器实现高精度三轴磁场测量。适用于种类繁多的线性、角度和三维应用。传统的霍尔效应传感器芯片只能感应垂直于霍尔效应元件表面(即IC和封装
    的头像 发表于 07-01 12:02 674次阅读
    新型<b class='flag-5'>磁</b><b class='flag-5'>传感器</b>技术@Melexis

    一文读懂 | 传感器:技术优势、定制化设计与应用指南

    本篇为您解答传感器在适用性、质量、定制化和设计支持等方面,大家普遍关注的问题,包括什么是传感器、技术优势、应用领域、定制传感器设计流程等
    的头像 发表于 06-17 16:39 1717次阅读
    一文读懂 | <b class='flag-5'>磁</b><b class='flag-5'>传感器</b>:技术优势、定制化设计与应用指南

    致伸缩传感器利用TDC时间测算

    AS6500是致伸缩位移传感器应用中时间测量任务的理想解决方案之一。
    的头像 发表于 06-13 17:49 491次阅读
    <b class='flag-5'>磁</b>致伸缩<b class='flag-5'>传感器</b>利用TDC时间测算

    致伸缩位移传感器简介

    致伸缩线性位移传感器的工作原理、主要组件及其在多个行业中的应用。此外,本文还对比了几种常用线性位置传感器的性能,并提出了选择线性位置传感器时需要考虑的因素。
    的头像 发表于 06-13 15:23 597次阅读
    <b class='flag-5'>磁</b>致伸缩位移<b class='flag-5'>传感器</b>简介

    STM32的致伸缩智能位移传感器研究

    本文通过STM32单片机作为传感器核心处理,采用具有较大致伸缩系数的铁镓合金作为致伸缩位移传感器的波导丝,开发一款量程为1m,分辨力为
    的头像 发表于 03-20 17:30 1002次阅读
    STM32的<b class='flag-5'>磁</b>致伸缩智能位移<b class='flag-5'>传感器</b>研究

    材料对致伸缩位移传感器信号的影响

    致伸缩材料状态对致伸缩位移传感器检测信号的影响的主要表现为永磁体在波导丝的不同位置时检测信号的幅值大小不同。
    的头像 发表于 03-01 13:49 778次阅读
    材料对<b class='flag-5'>磁</b>致伸缩位移<b class='flag-5'>传感器</b>信号的影响

    致伸缩位移传感器隔离电路

    致伸缩位移传感器利用致伸缩效应测位移,需设计隔离电路处理信号,包括电气隔离、信号调理、保护等,具体实现需根据传感器特性和应用场景选择合适方案。
    的头像 发表于 03-01 13:43 782次阅读
    <b class='flag-5'>磁</b>致伸缩位移<b class='flag-5'>传感器</b>隔离电路

    科普CMOS传感器的工作原理及特点

    技术的革新,还深刻影响了我们的生活和工作方式。本文将深入科普CMOS传感器的工作原理及其独特特点。 CMOS传感器的工作原理 CMOS传感器的工作原理基于半导体材料的特性,尤其是光电效
    的头像 发表于 02-27 18:36 2458次阅读
    <b class='flag-5'>科普</b>CMOS<b class='flag-5'>传感器</b>的工作原理及特点

    FPGA在致伸缩位移传感器中的应用

    FPGA在致伸缩位移传感器中用于信号处理、数据采集等,其高并行处理、可编程性提升了传感器速度、精度,支持复杂算法,实现实时控制,优化系统响应,是传感器高效、精准、智能化的核心。
    的头像 发表于 02-17 14:48 699次阅读

    干簧管传感器属于什么传感器

    干簧管传感器,又称簧开关传感器敏开关,是一种基于干簧管(Reed Switch)原理工作的传感器。作为一种重要的
    的头像 发表于 01-30 15:33 2367次阅读