0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

ICLR2019公布了最佳论文,有两篇论文获得了最佳论文

电子工程师 来源:lq 2019-05-08 10:04 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

【导语】ICLR 是深度学习领域的顶级会议,素有深度学习顶会 “无冕之王” 之称。今年的 ICLR 大会将于5月6日到5月9日在美国新奥尔良市举行,大会采用 OpenReview 的公开双盲评审机制,共接收了 1578 篇论文:其中 oral 论文 24 篇 (约占 1.5%),poster 论文共 476 篇 (占30.2%)。在这些录用的论文中,深度学习、强化学习和生成对抗网络 GANs 是最热门的三大研究方向。

今天, ICLR2019 公布了最佳论文,有两篇论文获得了最佳论文,在此对获奖论文作者及团队表示祝贺!一篇是《Ordered Neurons: Integrating Tree Structures into Recurrent Neural Networks》,在 RNN 网络中集成树结构,提出一种神经元排序策略,由蒙特利尔大学、微软研究院共同研究发表;另一篇是 MIT CSAIL 的研究成果《The Lottery Ticket Hypothesis: Finding Spare, Trainable Neural Networks》。下面就为大家带来这两篇最佳论文的解读。

论文一

论文地址:

https://openreview.net/forum?id=B1l6qiR5F7

摘要

自然语言可视为是一种小单元 (如短语) 嵌套在大单元 (如字句) 中的分层结构。当结束一个大单元时,内部所嵌套的小单元也将随之关闭。尽管标准的 LSTM 结构允许不同的神经元跟踪不同时间维度信息,但它对于层级结构建模中的各组成没有明确的偏向。针对这个问题,本文提出神经元排序策略来添加一个归纳偏置量 (inducive bias),当主输入向量和遗忘门结构确保给定的神经网络更新时,后续跟随的所有神经元也将随之更新。这种集成树结构的新颖循环神经网络 ON-LSTM (ordered neurons LSTM) 在四种不同的 NLP 任务:语言建模、无监督解析、目标句法评估和逻辑推理上都取得了良好的表现。

研究动机

将树结构集成到神经网络模型用于 NLP 任务主要有如下原因:

学习抽象的逐层特征表征是深度神经网络结构的一大关键特征

对语言的组成影响进行建模并通过 shortcuts 连接方法为反向传播过程提供有效的梯度信息,这有助于解决深度神经网络结构的长期依赖性问题

通过更好的归纳偏置来改善模型的泛化能力,同时能够减少模型训练过程对大量数据的需求

基于以上动机,该研究提出一种有序化神经元方法 (结构示意图如下图1),通过归纳偏置来强化每个神经元中的信息储存:大的、高级的神经元储存长期信息,这些信息通过大量的步骤保存;小的、低级的神经元储存短期信息,这些信息能够快速遗忘。此外,一种新型的激活函数 cumulative softmax (cumax) 用于主动为神经元分配长/短期所储存的信息,有效地避免高/低级神经元的固定划分问题。

总的来说,本文的研究集成树结构到 LSTM 网络中,并通过归纳偏置和 cumax 函数,构建一种新颖的 ON-LSTM 模型,在多项 NLP 任务中都取得了不错的性能表现。

图1 组成解析树结构与 ON-LSTM 模型隐藏状态的对应关系

实验结果

在四种 NLP 任务中评估 ON-LSTM 模型的性能,具体如下。

语言建模

图2 Penn Treebank 语言建模任务验证机和测试集的单模型困惑度

无监督句法组成分析

图3 full WSJ10 和 WSJ test 数据集上的句法组成分析评估结果

目标句法评估

图4 ON-LSTM 和 LSTM 模型在每个测试样本的总体精度表现

逻辑推理

图5 在逻辑短序列数据上训练的模型的测试精度

论文二

论文地址:

https://openreview.net/forum?id=rJl-b3RcF7

摘要

神经网络的剪枝技术能够在不影响模型准确性能的情况下,减少网络的训练参数量,多达90%以上,在降低计算存储空间的同时提高模型的推理性能。然而,先前的研究经验表明,通过剪枝技术得到的稀疏网络结构在初期是很难训练的,这似乎也有利于训练性能的提升。一个标准的剪枝技术能够自然地发现子网络结构,这些子网络的初始化能够帮助网络更有效地训练。

因此,本研究提出一种 lottery ticket hypothesis:对于那些包含子网络 (winning ticket) 结构的密集、随机初始化前馈网络,当单独训练这些子网络时,通过相似的训练迭代次数能够取得与原始网络相当的测试性能。而这些子网络也验证了初始的假设:即具有初始权重的连接网络能够更有效地训练。

基于这些结果,本文提出一种算法来确定子网络结构,并通过一系列的实验来支持 lottery ticket hypothesis 以及这些偶然初始化的重要性。实验结果表明,在 MNIST 和 CIFAR-10 数据集上,子网络的规模始终比几种全连接结构和卷积神经网络小10%-20%。当规模超过这个范围时,子网络能够比原始网络有更快的学习速度和更好的测试精度表现。

研究动机与方法

本文分析验证了存在较小的子网络结构,在相当的测试精度表现前提下,一开始就训练网络能够达到与较大子网络一样,甚至更快的训练速度。而基于此,本文提出 Lottery Ticket Hypothesis:将一个复杂网络的所有参数作为一个奖励池,存在一个参数组合所构成的子网络 (用 winning ticket 表示),单独训练该网络能够达到与原始复杂网络相当的测试精度。

对于该子网络结构的确定,主要是通过训练一个网络并剪枝其中最小权重来确定子网络,而其余未剪枝部分连接构成自网络的结构。具体步骤如下:

首先通过随机初始化得到一个复杂的神经网络 f

接着重复训练该网络 j 次,得到网络参数

然后对该模型按 p% 进行剪枝得到一个掩码 m;将步骤二中的网络参数作为参数向量,每个向量元素对应于一个 m,用于表征是否丢弃。

最后,对于存留下来的模型,在原始复杂网络参数组合进行初始化,创建一个子网络结构。

总的来说,本研究的主要贡献如下:

验证了剪枝技术能够发现可训练的子网络结构,而这些网络能够达到与原始网络相当的测试精度。

提出了一种 lottery ticket hypothesis,从一种新的角度来解释这些神经网络的组成。

证明了通过剪枝技术得到的子网络相比于原是网络,有着更快的学习速度、更高的测试精度和更好的泛化性能。

应用

本文的研究验证了确实存在比原始网络更快速、性能更佳的子网络,这种结构能够给未来的研究提供诸多方向:

提高模型训练性能:由于子网络能够从一开始就进行单独训练,因此尽早进行剪枝的训练方案值得进一步探索。

设计更好的网络结构:子网络结构的存在说明稀疏架构和初始化组合有利于模型的学习。因此设计出有助于学习的新结构和初始化方案,甚至将子网络结构迁移到其他任务仍需要进一步研究。

提高神经网络的理论理解高度:更加深入地理解随机初始化网络与子网络的关系、网络优化与泛化性能的知识等。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 神经网络
    +关注

    关注

    42

    文章

    4829

    浏览量

    106819
  • 神经元
    +关注

    关注

    1

    文章

    369

    浏览量

    19111
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123920

原文标题:ICLR 2019最佳论文揭晓!NLP深度学习、神经网络压缩夺魁 | 技术头条

文章出处:【微信号:rgznai100,微信公众号:rgznai100】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    MediaTek多论文入选全球前沿国际学术会议

    MediaTek 宣布,今年旗下多论文入选 ISSCC、NeurIPS、CVPR、ICLR、ICML、ICC、CLOBECOM 等全球半导体、人工智能及通信领域的前沿国际学术会议。此外
    的头像 发表于 12-02 14:43 340次阅读

    地平线五论文入选NeurIPS 2025与AAAI 2026

    近日,大顶级学术会议录用结果相继揭晓,地平线凭借在机器人算法领域的深度钻研,共有5论文从全球数万份投稿中脱颖而出,分别入选NeurIPS 2025与AAAI 2026。
    的头像 发表于 11-27 11:39 507次阅读
    地平线五<b class='flag-5'>篇</b><b class='flag-5'>论文</b>入选NeurIPS 2025与AAAI 2026

    后摩智能六论文入选四大国际顶会

    2025年以来,后摩智能在多项前沿研究领域取得突破性进展,近期在NeurIPS、ICCV、AAAI、ACMMM四大国际顶会上有 6 论文入选。致力于大模型的推理优化、微调、部署等关键技术难题,为大模型的性能优化与跨场景应用提供
    的头像 发表于 11-24 16:42 729次阅读
    后摩智能六<b class='flag-5'>篇</b><b class='flag-5'>论文</b>入选四大国际顶会

    Nullmax端到端轨迹规划论文入选AAAI 2026

    11月8日,全球人工智能顶会 AAAI 2026 公布论文录用结果,Nullmax 研发团队的端到端轨迹规划论文成功入选。该论文创新提出一种由粗到精的轨迹预测框架——DiffRefin
    的头像 发表于 11-12 10:53 542次阅读

    思必驰与上海交大联合实验室五论文入选NeurIPS 2025

    近日,机器学习与计算神经科学领域全球顶级学术顶级会议NeurIPS 2025公布论文录用结果,思必驰-上海交大联合实验室共有5论文被收录。NeurIPS(Conference on
    的头像 发表于 10-23 15:24 584次阅读
    思必驰与上海交大联合实验室五<b class='flag-5'>篇</b><b class='flag-5'>论文</b>入选NeurIPS 2025

    格灵深瞳六论文入选ICCV 2025

    近日,国际顶级会议ICCV 2025(计算机视觉国际大会)公布论文录用结果,格灵深瞳团队共有6论文入选。
    的头像 发表于 07-07 18:23 1309次阅读

    后摩智能与高校合作研究成果荣获ISCA 2025最佳论文

    》,成功荣获第52届计算机体系结构国际研讨会(ISCA)最佳论文奖。作为国内学术机构在该会议上的首次获奖成果,其核心创新聚焦于边缘侧大语言模型(LLM)推理加速架构的关键技术突破,为解决边缘设备高效LLM推理难题提供创新性方案
    的头像 发表于 07-05 11:21 1883次阅读

    理想汽车八论文入选ICCV 2025

    近日,ICCV 2025(国际计算机视觉大会)公布论文录用结果,理想汽车共有8论文入选,其中5来自自动驾驶团队,3
    的头像 发表于 07-03 13:58 845次阅读

    基于STM32蓝牙控制小车系统设计(硬件+源代码+论文)下载

    基于STM32蓝牙控制小车系统设计(硬件+源代码+论文)推荐下载!
    发表于 05-29 21:45

    后摩智能四论文入选三大国际顶会

    2025 年上半年,继年初被 AAAI、ICLR、DAC 三大国际顶会收录 5 论文后,后摩智能近期又有 4 论文入选CVPR、ICML
    的头像 发表于 05-29 15:37 1094次阅读

    云知声四论文入选自然语言处理顶会ACL 2025

    结果正式公布。云知声在此次国际学术盛会中表现卓越,共有4论文被接收,其中包括2主会论文(Main Paper)和2
    的头像 发表于 05-26 14:15 1051次阅读
    云知声四<b class='flag-5'>篇</b><b class='flag-5'>论文</b>入选自然语言处理顶会ACL 2025

    老板必修课:如何用NotebookLM 在上下班路上吃透一科技论文

    常必要的,这有助于我们理解技术边界,更好地定义产品并做出更精准的投资决策。 一,使用NotebookLM,随身解读科技论文 我经常使用的解读科技论文的工具是Notebook,只需要把科技论文丢给它,它即可以: 1. 自动生成的摘
    的头像 发表于 05-07 16:13 563次阅读
    老板必修课:如何用NotebookLM 在上下班路上吃透一<b class='flag-5'>篇</b>科技<b class='flag-5'>论文</b>?

    美报告:中国芯片研究论文全球领先

    论文方面同样表现出色。 报告数据显示,2018年至2023年间,全球发布约47.5万与芯片设计和制造相关的论文。其中34%的论文来自中
    的头像 发表于 03-05 14:32 1724次阅读

    后摩智能5论文入选国际顶会

    2025年伊始,后摩智能在三大国际顶会(AAAI、ICLR、DAC)中斩获佳绩,共有5论文被收录,覆盖大语言模型(LLM)推理优化、模型量化、硬件加速等前沿方向。
    的头像 发表于 02-19 14:02 1197次阅读
    后摩智能5<b class='flag-5'>篇</b><b class='flag-5'>论文</b>入选国际顶会

    商汤科技徐立论文再获“时间检验奖”

    十几年前的论文为何还能获奖?因为经过了时间的检验。
    的头像 发表于 12-12 10:23 898次阅读