0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

四种将被氮化镓革新电子设计的中压应用

半导体芯科技SiSC 来源:半导体芯科技SiSC 作者:半导体芯科技SiS 2024-03-27 14:55 次阅读

来源:德州仪器

引言

随着技术的迅速发展,人们对电源的需求亦在不断攀升。为了可持续地推动这一发展,太阳能等可再生能源被越来越多地用于电网供电。同样,为了实现更快的数据处理、大数据存储以及人工智能 (AI),服务器的需求也在呈指数级增长。鉴于这些趋势,设计人员面临着一项重大挑战:如何在持续提升设计效率的同时,在相同的尺寸内实现更高的功率。

这一挑战已经推动了氮化镓 (GaN) 在高压电源设计中的广泛应用,原因在于 GaN 具有两大优势:

· 提高功率密度。GaN 的开关频率较高,使设计人员能够使用体积更小的无源器件(如电感器电容器),从而缩小电路板的尺寸。

· ‌提升效率。相较于硅设计,GaN 出色的开关和导通损耗性能可将损耗降低 50% 以上。

除了业界已经采用的高压 GaN(额定值 >=600V)外,新的中压 GaN 解决方案(额定值 80V-200V)也日益受到欢迎,可在高压 GaN 之前无法支持的电源系统中实现更高的功率密度和效率。

这篇文章将详述四个主要的中压应用领域,这些领域正在逐渐采用 GaN 技术。

应用领域 1:太阳能

太阳能是发展最快的可再生能源,从 2021 年到 2022 年增长了 26%,预计在未来七到八年内,太阳能利用将以约 11.5% 的复合年增长率发展。随着太阳能电池板安装数量的增加,人们对系统效率和功率密度的需求也将随之增长,因为这是一种对空间需求较高的技术。‌对于太阳能电池板子系统而言,LMG2100R044 和 LMG3100R017 器件有助于将系统尺寸缩小 40% 以上。

太阳能主要通过太阳能电池板的两种子系统得以实现:一种是升压级后跟逆变器级,将直流电压范围转换为交流电压(如图 1 所示);另一种是降压和升压级,其中电源优化器将不断变化的直流电压转换为常见的直流电压电平(利用最大功率点跟踪),以输送到串式逆变器(如图 2 所示)。

wKgZomYDwsyATZVeAAGxeHMsSdk146.jpg

图 1 微型逆变器框图

wKgaomYDwsyADWf8AAD0SXGnj6w540.jpg

图 2 电源优化器框图

应用领域 2:服务器

考虑到我们仍处在人工智能革命的初期阶段,为了运行复杂的机器学习算法并实现更大、更复杂数据集的存储,服务器的需求将呈指数级增长。要求每个级的效率高于 98% 的高密度设计将能够满足这些增强型处理和存储需求。

如图 3 所示,服务器电源应用中的三个主要系统可以采用 100V 至 200V 的 GaN:

· 电源单元 (PSU)。开放计算项目的变化正在提升 48V 输出的热度;然而,所需 80V 和 100V 硅解决方案的损耗(栅极驱动和重叠损耗)相较于以前的解决方案有大幅增长。诸如 LMG3100 等 GaN 解决方案有助于尽可能减小电感-电感-电容器级(LLC 级)次级侧同步整流器中的上述损耗。

· 中间总线转换器 (IBC)。此系统将 PSU 输出的中间电压 (48V) 转换为较低的电压,然后传送至服务器。随着 48V 电压电平的流行,IBC 有助于减少服务器子系统中的 I2R 损耗,并使汇流条和电力传输线的尺寸和成本都得到降低。IBC 的缺点是其在电源转换中又增加了一步,可能会对效率产生影响。因此,除了 OEM 经测试可获得高效率和高功率密度最佳组合的几种新拓扑外,请务必充分利用 LMG2100 和 LMG3100 等高效 GaN 器件。

· 电池备份单元。降压/升压级通常将电池电压 (48V) 转换为总线电压 (48V)。当市电线路断电且电力流为双向时,您也可以使用电池备份单元进行电池电源转换。不间断电源之所以使用此级,是因为它仅通过电池直接执行一次直流/直流转换,避免了由直流/交流/直流转换引起的损耗。

wKgaomYDws6Ac1tPAAFmY7dkdBE534.jpg

图 3 服务器电源框图

应用领域 3:电信电源

在电信无线电设备中,电源有可能采用 GaN 设计。由于无线电设备通常安置在户外,仅依赖自然冷却,因此高效率显得尤为重要。此外,随着移动网络(如 5G、6G)的逐步发展,加快网络速度和数据处理的需求也在增加,因此需要具有极低损耗的高密度设计。LMG2100 有助于将此类设计的功率密度提高 40% 以上。

在典型的中压应用中,GaN 将负电池电压电平(通常为 -48V)的电源,利用反向降压/升压或正向转换器拓扑转换为适用于功率放大器的 +48V 电源,或者利用降压转换器拓扑为现场可编程门阵列和其他直流负载供电。

应用领域 4:电机驱动

没错,您可以在电机驱动电路中使用 GaN,其应用领域广泛,包括机器人、电动工具驱动以及两轮牵引逆变器设计等负载曲线不同的应用。GaN 的零反向恢复特性(因为不存在体二极管)导致二极管反向偏置电流没有稳定时间,从而降低了死区损失,提高了效率。如前所述,GaN 的开关频率更高,电流纹波更低,这样就可以减小无源器件的尺寸,从而实现更平滑的电机驱动设计。

图 4 展示了如何在电机驱动单元中添加 GaN。

wKgZomYDws6AMMbGAAC2YCTiabs447.jpg

图 4 电机驱动单元框图

结语

在各种中压应用中,GaN 有潜力取代传统的硅 FET。100V 至 200V GaN 的其他应用领域包括通用直流/直流转换、D 类音频放大器,以及电池测试和化成设备。此外,GaN 还能提供更高的开关频率和更低的功率损耗,这些优势在简化电源设计的集成电源级中尤为突出。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 氮化镓
    +关注

    关注

    53

    文章

    1502

    浏览量

    114902
  • 电子设计
    +关注

    关注

    37

    文章

    756

    浏览量

    48285
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1766

    浏览量

    67989
收藏 人收藏

    评论

    相关推荐

    四种将被氮化革新电子设计的中压应用

    除了业界已经采用的高压 GaN(额定值 >=600V)外,新的中压 GaN 解决方案(额定值 80V-200V)也日益受到欢迎,可在高压 GaN 之前无法支持的电源系统中实现更高的功率密度和效率。
    的头像 发表于 03-15 17:58 1597次阅读
    <b class='flag-5'>四种</b><b class='flag-5'>将被</b><b class='flag-5'>氮化</b>镓<b class='flag-5'>革新</b><b class='flag-5'>电子设计</b>的中压应用

    #氮化 #英飞凌 8.3亿美元!英飞凌完成收购氮化系统公司 (GaN Systems)

    半导体氮化
    深圳市浮思特科技有限公司
    发布于 :2023年10月25日 16:11:22

    氮化芯片未来会取代硅芯片吗?

    氮化 (GaN) 可为便携式产品提供更小、更轻、更高效的桌面 AC-DC 电源。Keep Tops 氮化(GaN)是一宽带隙半导体材料
    发表于 08-21 17:06

    氮化测试

    氮化
    jf_00834201
    发布于 :2023年07月13日 22:03:24

    有关氮化半导体的常见错误观念

    氮化(GaN)是一全新的使能技术,可实现更高的效率、显着减小系统尺寸、更轻和于应用取得硅器件无法实现的性能。那么,为什么关于氮化
    发表于 06-25 14:17

    纳微集成氮化电源解决方案和应用

    纳微集成氮化电源解决方案及应用
    发表于 06-19 11:10

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™功率芯片是一易于使用的“数字输入
    发表于 06-15 16:03

    为什么氮化比硅更好?

    氮化(GaN)是一“宽禁带”(WBG)材料。禁带,是指电子从原子核轨道上脱离出来所需要的能量,氮化
    发表于 06-15 15:53

    氮化: 历史与未来

    (86) ,因此在正常体温下,它会在人的手中融化。 又过了65年,氮化首次被人工合成。直到20世纪60年代,制造氮化单晶薄膜的技术才得以出现。作为一
    发表于 06-15 15:50

    为什么氮化(GaN)很重要?

    氮化(GaN)的重要性日益凸显,增加。因为它与传统的硅技术相比,不仅性能优异,应用范围广泛,而且还能有效减少能量损耗和空间的占用。在一些研发和应用,传统硅器件在能量转换方面,已经达到了它的物理
    发表于 06-15 15:47

    什么是氮化(GaN)?

    氮化,由(原子序数 31)和氮(原子序数 7)结合而来的化合物。它是拥有稳定六边形晶体结构的宽禁带半导体材料。禁带,是指电子从原子核轨道上脱离所需要的能量,
    发表于 06-15 15:41

    氮化功率芯片如何在高频下实现更高的效率?

    氮化为单开关电路准谐振反激式带来了低电荷(低电容)、低损耗的优势。和传统慢速的硅器件,以及分立氮化的典型开关频率(65kHz)相比,集成式氮化
    发表于 06-15 15:35

    氮化功率芯片的优势

    容易使用。通过简单的“数字输入、电源输出”操作,布局和控制都很简单。dV/dt 回转率控制和欠锁定等功能,确保了氮化功率芯片能最大限度地提高“一次性成功”的设计的机会,从而极为有效地缩短了产品上市
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    ,是氮化功率芯片发展的关键人物。 首席技术官 Dan Kinzer在他长达 30 年的职业生涯,长期担任副总裁及更高级别的管理职位,并领导研发工作。他在硅、碳化硅(SiC)和氮化
    发表于 06-15 15:28

    什么是氮化功率芯片?

    氮化(GaN)功率芯片,将多种电力电子器件整合到一个氮化芯片上,能有效提高产品充电速度、效率、可靠性和成本效益。在很多案例
    发表于 06-15 14:17