0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

高效介孔钙钛矿太阳能电池的电子注入和缺陷钝化!

DT半导体 来源:JAD电解质学术交流 2024-03-20 10:39 次阅读

大多数钙钛矿太阳能电池(PSC)均采用分层结构,其中包括空穴传输层(HTL)和贵金属电极。可印刷介观钙钛矿太阳能电池(p-MPSC)不需要传统p-n结所需的额外空穴传输层,但也表现出约19%的较低功率转换效率。

鉴于此,华中科技大学韩宏伟教授梅安意副教授凌福日副教授进行了器件模拟和载流子动力学分析,设计了一种p-MPSC,该p-MPSC具有半导体二氧化钛、绝缘二氧化锆和渗透钙钛矿的导电碳介孔层,能够将光激发电子三维注入二氧化钛中,以便在透明导体处收集层。空穴向碳背电极进行长距离扩散,这种载流子分离减少了背接触处的复合。磷酸铵改性减少了本体二氧化钛/钙钛矿界面处的非辐射复合。由此产生的p-MPSC实现了22.2%的功率转换效率,并在55±5°C的最大功率点跟踪750小时后仍保持其初始效率的97%。相关研究成果以题为“Electron injection and defect passivation for high-efficiency mesoporous perovskite solar cells”发表在最新一期《Science》上。

f7697506-e5ed-11ee-a297-92fbcf53809c.png

实验内容

【设备配置和操作】

图1A说明了在涂有致密TiO2(c-TiO2)的透明导电氧化物玻璃上p-MPSC的完全可印刷制造工艺和三层介孔器件配置。钙钛矿Cs0.05MA0.15FA0.8PbI2.96Br0.04同时填充在3D互连孔中并与TiO2和碳介孔层接触。入射光被mp-TiO2层中负载的钙钛矿吸收,产生电荷载流子(图1B)。电子在mp-TiO2/钙钛矿3D电子选择性界面处被mp-TiO2层提取,而空穴在该界面处被阻挡,从而导致载流子分离。空穴通过钙钛矿扩散到背面mp-C电极。然后,提取的电子在TiO2中传输至负极并在那里被收集。二维数值模拟(图1C)研究了ETL的中观结构对器件性能的影响,进一步了解p-MPSC中光电转换的动态过程。图1D显示增加孔径和减少孔径长度提高了p-MPSC的整体性能,包括VOC,并验证了介观结构的有效性,介观ETL使得p-MPSC不需要空穴选择性接触。

f76fc302-e5ed-11ee-a297-92fbcf53809c.jpg

装置结构及工作机理

【载流子动态测量】

作者通过实验研究了 p-MPSC 的载体动力学。图 2A 展示了支架内填充有致密钙钛矿的 p-MPSC 的横截面扫描电子显微镜 (SEM) 图像。分层结构导致分层光致发光 (PL) 强度,这一点通过横截面 PL 映射测量得到验证(图 2B),光谱结果表明:mp-TiO2薄膜诱导了分别位于mp-TiO2和钙钛矿中的电子和空穴的电荷分离态的形成,从而延长了钙钛矿中空穴的载流子寿命。纳秒到微秒级的瞬态吸收(TA)测量(图2C,D)表明在带隙处显示出一个尖锐的漂白峰,这是由激发时电荷载流子填充引起的。mp-TiO2和mp-ZrO2中钙钛矿漂白恢复动力学的比较(图2E)表明,mp-TiO2中钙钛矿的漂白恢复表现出比mp-ZrO2更快和慢得多的衰减成分。这些结果证实了钙钛矿中的电子转移过程和残留长寿命空穴(2.5μs)的存在。mp-ZrO2薄膜中钙钛矿在激发后不同延迟时间的PL强度图像,显示了载流子扩散引起的PL强度的扩散。

通过将高斯方差拟合为时间函数,双极扩散常数确定为0.19±0.013 cm2s−1(图2G、H)。考虑到空穴寿命为2.5μs,作者确定了介孔支架中的扩散长度LD=6.9±0.2 μm,证明空穴可以有效地传输到p-MPSC中的背电极。p-MPSC的光电流主要是由体注入过程中mp-TiO2内钙钛矿中产生的载流子贡献的;无法收集mp-ZrO2内钙钛矿中产生的载流子(图2I)。

f780dafc-e5ed-11ee-a297-92fbcf53809c.jpg

载流子动力学

【光伏性能与缺陷钝化】

不同尺寸和电荷数的阴离子的硬度通过密度泛函理论计算获得的静电势(ESP,ϕ)进行评估(图3A)。计算得出的盐类与TiO2的结合强度(图3B)随阴离子的ϕmin减小而增加(图3C)。实验结果也佐证阴阳离子协同调节对增强盐钝化剂与TiO2之间结合力的必要性。作者还评估了当PO43-与TiO2结合时,TMA3PO4对OV形成的影响(图3D)。裸TiO2倾向于形成中性OV,因为它的形成能大于TAM3PO4的形成能。然而,当用TMA3PO4调制时,(4.8eV)的形成能远远大于(2.8eV)的形成能。

f79105d0-e5ed-11ee-a297-92fbcf53809c.jpg

盐与TiO2相互作用的密度泛函理论计算

未处理和用钾盐和磷酸盐处理的mp-TiO2薄膜的电导率(图4A)和功函数(图4B)结果以及基于未处理和处理过的mp-TiO2薄膜横向结构的SCLC器件的电流-电压(-V)特性表明:缺陷密度的变化趋势与电导率和功函数的变化趋势一致(图4C)。高分辨率X射线光电子能谱也验证了盐与TiO2之间的相互作用。Ti 2p的结合能对于盐的增加顺序为KI
f7a5969e-e5ed-11ee-a297-92fbcf53809c.jpg

盐导致的缺陷钝化

用TMA3PO4处理mp-TiO2后,作者实现了p-MPSC的整体性能改进(图5)。平均 V OC 、 J SC 、填充因子 (FF) 和相应的 PCE 从 1.01 V、24.2 mA/ cm 2 、0.77 和 19.0% 分别达到 1.06 V、25.3 mA/cm 2 、0.80 和 21.5%。目标器件的电荷传输寿命为7.9 μs,电荷复合寿命为1.22 ms,而对照器件的电荷传输寿命和电荷复合寿命分别为14.9 μs和0.42 ms(图5B,C)。当掩模面积为0.1 cm2时,冠军目标器件的PCE为22.2%,VOC为1.06 V,JSC为25.6 mA cm−2,FF为0.82(图5D)。全面积为0.72 cm 2 的目标器件同样在无掩模的情况下进行测试,并表现出较高的V OC ,最高值达到1.16 V(图5E)。

进一步开发了由14个串联子电池组成的可印刷介孔钙钛矿太阳能微型组件,其孔径面积为57.5 cm2,几何填充因子为91%,并实现了孔径面积PCE为18.2%,JSC为 1.69 mA/cm2,FF 为 0.69,VOC 为 15.54 V(图 5F),对应于每个子电池的平均 VOC 为 1.11 V。p-MPSC 还表现出良好的稳定性,在 55 ± 5°C 最大功率点连续运行约 1 个月(750 小时)后,仍保持其初始效率的 97%(图 5G)。

f7b0fa2a-e5ed-11ee-a297-92fbcf53809c.jpg

设备性能

结论

本文成功展示了一种高效的无空穴导体碳基p-MPSC,其PCE创纪录超过22%。这项工作表明,在mp-TiO2和嵌入的钙钛矿之间的界面处快速有效的电子收集对于驱动载流子分离和限制复合至关重要,这使得在没有HTL的情况下可以实现高PCE。通过将阴离子的硬路易斯碱与阳离子的软路易斯酸偶联,他们开发了一种靶向盐处理方法,有助于抑制复合并增强界面的电荷转移,实现PCE突破。该研究提供了一种简便且可扩展的技术,可以在环境条件下通过全湿法加工以低成本生产高效太阳能电池。此外,介观结构通过引入载流子行为的额外调节维度,为设计光收集、甚至光检测和发光的光电器件提供了多功能性。




审核编辑:刘清

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 太阳能电池
    +关注

    关注

    22

    文章

    1096

    浏览量

    68702
  • 光电器件
    +关注

    关注

    1

    文章

    170

    浏览量

    18257
  • 电流电压
    +关注

    关注

    0

    文章

    186

    浏览量

    11740
  • 载流子
    +关注

    关注

    0

    文章

    119

    浏览量

    7500

原文标题:韩宏伟教授最新Science!高效介孔钙钛矿太阳能电池的电子注入和缺陷钝化

文章出处:【微信号:DT-Semiconductor,微信公众号:DT半导体】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    太阳能电池板与太阳能电池有什么区别

    太阳能电池板和太阳能电池太阳能光伏系统中的两个关键组成部分,它们在概念、结构和应用方面存在着明显的区别。
    的头像 发表于 04-16 15:55 151次阅读

    钙钛矿太阳能电池产线工艺环节介绍

    钙钛矿太阳能电池技术是一种包含钙钛矿结构化合物作为光捕获活性层的太阳能电池,钙钛矿具有宽吸收光谱、快速电荷分离、电子和空穴传输距离长、载流子分离寿命长等固有特性。但与其他成熟的太阳能
    的头像 发表于 03-09 08:31 1113次阅读
    钙钛矿<b class='flag-5'>太阳能电池</b>产线工艺环节介绍

    注入退火工艺对TOPCon太阳能电池电性能的影响

    光伏TOPCon太阳能电池片作为高效太阳能电池技术,具有更高的转换效率和更低的能源成本,受到了广泛的关注。生产环节技术的发展和规模化生产的推动,使TOPCon太阳能电池的成本逐渐降低
    的头像 发表于 03-07 08:32 811次阅读
    光<b class='flag-5'>注入</b>退火工艺对TOPCon<b class='flag-5'>太阳能电池</b>电性能的影响

    高效太阳能电池发展进程:晶硅-钙钛矿太阳能电池技术

    光电转换效率是评价光伏技术潜力的核心指标。目前,传统晶硅电池的光电转换效率已接近29.4%的理论极限,而晶硅—钙钛矿叠层电池的理论效率极限可达43%。晶硅太阳能电池能够吸收可见光的一部分
    的头像 发表于 02-24 08:32 428次阅读
    <b class='flag-5'>高效</b><b class='flag-5'>太阳能电池</b>发展进程:晶硅-钙钛矿<b class='flag-5'>太阳能电池</b>技术

    太阳能电池工作原理 太阳能电池与锂电池的区别

    太阳能电池工作原理 太阳能电池与锂电池的区别  太阳能电池是一种将太阳能直接转化为电能的装置。它可以利用光的能量来产生电流,进而为
    的头像 发表于 01-10 16:50 678次阅读

    太阳能电池电压调节器电路原理图

    太阳能电池电压调节器是离网太阳能系统的关键组件,主要是防止电池过度充电,同时调节和控制从太阳能电池板提供给电池和连接的
    的头像 发表于 12-26 18:24 675次阅读
    <b class='flag-5'>太阳能电池</b>电压调节器电路原理图

    太阳能电池特性

    太阳能电池特性  太阳能电池是一种利用光能直接转化成电能的装置。它是目前可再生能源领域最常见也是最常用的装置之一。太阳能电池具有很多特性,下面将详细介绍。 首先,太阳能电池具有高转化效
    的头像 发表于 12-07 17:03 847次阅读

    退火工艺对薄膜太阳能电池的影响

    对薄膜太阳能电池进行适当的后处理工艺是提高薄膜太阳能电池性能的重要手段之一,退火工艺作为一种常见的后处理工艺,可大幅度改善薄膜材料的结晶性、去除缺陷、调整相组成等,从而提高薄膜太阳能电池
    的头像 发表于 11-23 08:33 360次阅读
    退火工艺对薄膜<b class='flag-5'>太阳能电池</b>的影响

    高效三结聚合物太阳能电池的设计创造新记录

    电子发烧友网站提供《高效三结聚合物太阳能电池的设计创造新记录.doc》资料免费下载
    发表于 11-02 14:39 0次下载
    <b class='flag-5'>高效</b>三结聚合物<b class='flag-5'>太阳能电池</b>的设计创造新记录

    太阳能电池工作原理 硅太阳能电池分类

    。 硅太阳能电池通过向硅材料掺杂杂质,形成PN结,使其形成一个电场。当太阳光照射到硅材料的表面时,会产生电子-空穴对。电子和空穴在电场作用下发生漂移和扩散,最终到达PN结的两端,形成电
    的头像 发表于 10-18 14:43 1716次阅读

    钙钛矿太阳能电池,吹响光伏市场号角!

    的美能四探针电阻测试仪,可以高效检测沉积在太阳能电池片的ITO薄膜的电阻率与方阻,从而帮助电池厂商更好的保障钙钛矿太阳能电池的光电转换率。本期「美能光伏」将给您介绍
    的头像 发表于 09-19 10:05 476次阅读
    钙钛矿<b class='flag-5'>太阳能电池</b>,吹响光伏市场号角!

    晶硅太阳能电池生产工艺——高温退火

    结构方面的信息,并根据获得的H含量了解电池片离子注入后的钝化情况,从而帮助电池厂商顺利保障电池的性能。本期「美能光伏」将给您介绍晶硅
    的头像 发表于 09-04 16:18 847次阅读
    晶硅<b class='flag-5'>太阳能电池</b>生产工艺——高温退火

    离子注入技术在晶硅太阳能电池中的应用优势

    谱仪可通过测量离子注入工艺后晶硅太阳能电池的H含量,来判定其钝化效果是否符合电池生产标准,进而判断太阳能电池的效率与性能。本期「美能光伏」将
    的头像 发表于 08-29 08:35 420次阅读
    离子<b class='flag-5'>注入</b>技术在晶硅<b class='flag-5'>太阳能电池</b>中的应用优势

    Nicd智能充电器模块能否与太阳能电池板一起使用?

    我正在为我捡到的一些 Nicd 电池寻找智能充电器模块。我从中国找到了几个便宜的充电器,但它们并不智能。电池空间有一个合适的,但我想知道是否有人可以推荐我在英国可以买到的东西。我打算将它与太阳能电池板一起使用。
    发表于 05-15 07:01

    如何通过太阳能电池板的充电电池为wemos d1 mini供电?

    我的目的是通过太阳能电池板的充电电池为 wemos d1 mini 供电。在各种测试中,如果我将 wemos 与电源(电源插座或暴露在阳光下的太阳能电池板)断开连接,我有一定比例的电池
    发表于 05-11 09:08