前言
TorchVision支持主流姿态评估模型关键点检测模型KeyPointRCNN,通过它可以轻松获取人体的17个关键点,跟OpenPose等模型相比,KeyPointRCNN基于TorchVision框架,迁移学习训练简单,支持一键导出ONNX格式,可以部署到ONNXRUNTIME与OpenVINO,支持C++与Python的SDK部署,可以说在易用性上丝毫不差!

KeyPointRCNN模型介绍
Torchvision中KeyPointRCNN已经是基于2021年的论文中的最新版本,效果非常好,2021年论文比2019论文最大的改动在预测的编码与解码部分,提出了CIF与CAF两种新的编码方法,模型结构图示如下:

上述一段英文交代的比较清楚,模型输入就是一张RGB彩色图像,模型最终的输出有四个部分组成,分别是boxes、labels、scores、keypoints,它们的输出结构如下:

不是还有最后一个输出层没有解释吗,最后一个输出层其实是各个关键点的得分信息,小于的基本上应该都被干掉,不可信。
另外KeyPoint部分输出是17x3,3表示x、y、v其中v表示是否可见,v为1表示该关键点可见、v为0表示该关键点不可见。 各个关节点的连接顺序与编码坐标如下(写代码有用的):


KeyPointRCNN推理演示
Torchvision官方提供了预训练的模型,直接下载之后,通过下面的脚本就可以转换为ONNX格式模型,然后通过ONNXRUNTIME就可以完成推理演示。
第一步,转ONNX格式
相关脚本如下
model=torchvision.models.detection.keypointrcnn_resnet50_fpn(weights=KeypointRCNN_ResNet50_FPN_Weights.DEFAULT) model.eval() x=[torch.rand(3,300,400),torch.rand(3,500,400)] predictions=model(x) #optionally,ifyouwanttoexportthemodeltoONNX: torch.onnx.export(model,x,"keypoint_rcnn.onnx",opset_version=11)如果不工作,请参考这里的转换脚本修改之: TorchVision对象检测RetinaNet推理演示
第二步:ONNRUNTIME推理演示
这部分跟之前发过一篇RetinaNet推理文章非常相似,这篇文章的连接如下,代码只是稍微改了那么一点点,增加了KeyPoint部分的可视化,推理部分的代码如下:
importonnxruntimeasort
importcv2ascv
importnumpyasnp
importtorchvision
coco_names={'0':'background','1':'person','2':'bicycle','3':'car','4':'motorcycle','5':'airplane','6':'bus',
'7':'train','8':'truck','9':'boat','10':'trafficlight','11':'firehydrant','13':'stopsign',
'14':'parkingmeter','15':'bench','16':'bird','17':'cat','18':'dog','19':'horse','20':'sheep',
'21':'cow','22':'elephant','23':'bear','24':'zebra','25':'giraffe','27':'backpack',
'28':'umbrella','31':'handbag','32':'tie','33':'suitcase','34':'frisbee','35':'skis',
'36':'snowboard','37':'sportsball','38':'kite','39':'baseballbat','40':'baseballglove',
'41':'skateboard','42':'surfboard','43':'tennisracket','44':'bottle','46':'wineglass',
'47':'cup','48':'fork','49':'knife','50':'spoon','51':'bowl','52':'banana','53':'apple',
'54':'sandwich','55':'orange','56':'broccoli','57':'carrot','58':'hotdog','59':'pizza',
'60':'donut','61':'cake','62':'chair','63':'couch','64':'pottedplant','65':'bed',
'67':'diningtable','70':'toilet','72':'tv','73':'laptop','74':'mouse','75':'remote',
'76':'keyboard','77':'cellphone','78':'microwave','79':'oven','80':'toaster','81':'sink',
'82':'refrigerator','84':'book','85':'clock','86':'vase','87':'scissors','88':'teddybear',
'89':'hairdrier','90':'toothbrush'}
transform=torchvision.transforms.Compose([torchvision.transforms.ToTensor()])
sess_options=ort.SessionOptions()
#Belowisforoptimizingperformance
sess_options.intra_op_num_threads=24
#sess_options.execution_mode=ort.ExecutionMode.ORT_PARALLEL
sess_options.graph_optimization_level=ort.GraphOptimizationLevel.ORT_ENABLE_ALL
ort_session=ort.InferenceSession("keypointrcnn_resnet50_fpn.onnx",sess_options=sess_options,
providers=['CUDAExecutionProvider'])
src=cv.imread("D:/images/messi_player.jpg")
cv.namedWindow("KeyPointRCNNDetectionDemo",cv.WINDOW_AUTOSIZE)
image=cv.cvtColor(src,cv.COLOR_BGR2RGB)
blob=transform(image)
c,h,w=blob.shape
input_x=blob.view(1,c,h,w)
defto_numpy(tensor):
returntensor.detach().cpu().numpy()iftensor.requires_gradelsetensor.cpu().numpy()
#computeONNXRuntimeoutputprediction
ort_inputs={ort_session.get_inputs()[0].name:to_numpy(input_x)}
ort_outs=ort_session.run(None,ort_inputs)
#(N,4)dimensionalarraycontainingtheabsolutebounding-box
boxes=ort_outs[0]
#labels
labels=ort_outs[1]
#scores
scores=ort_outs[2]
#key_points
multi_key_points=ort_outs[3]
print(boxes.shape,boxes.dtype,labels.shape,labels.dtype,scores.shape,scores.dtype,multi_key_points.shape)
index=0
forx1,y1,x2,y2inboxes:
ifscores[index]>0.5:
cv.rectangle(src,(np.int32(x1),np.int32(y1)),
(np.int32(x2),np.int32(y2)),(140,199,0),2,8,0)
label_id=labels[index]
label_txt=coco_names[str(label_id)]
cv.putText(src,label_txt,(np.int32(x1),np.int32(y1)),cv.FONT_HERSHEY_SIMPLEX,0.75,(0,0,255),1)
kpts=np.int32(multi_key_points[index])
#nose->left_eye->left_ear.(0,1),(1,3)
cv.line(src,(kpts[0][0],kpts[0][1]),(kpts[1][0],kpts[1][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[1][0],kpts[1][1]),(kpts[3][0],kpts[3][1]),(255,255,0),2,8,0)
#nose->right_eye->right_ear.(0,2),(2,4)
cv.line(src,(kpts[0][0],kpts[0][1]),(kpts[2][0],kpts[2][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[2][0],kpts[2][1]),(kpts[4][0],kpts[4][1]),(255,255,0),2,8,0)
#nose->left_shoulder->left_elbow->left_wrist.(0,5),(5,7),(7,9)
cv.line(src,(kpts[0][0],kpts[0][1]),(kpts[5][0],kpts[5][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[5][0],kpts[5][1]),(kpts[7][0],kpts[7][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[7][0],kpts[7][1]),(kpts[9][0],kpts[9][1]),(255,255,0),2,8,0)
#nose->right_shoulder->right_elbow->right_wrist.(0,6),(6,8),(8,10)
cv.line(src,(kpts[0][0],kpts[0][1]),(kpts[6][0],kpts[6][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[6][0],kpts[6][1]),(kpts[8][0],kpts[8][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[8][0],kpts[8][1]),(kpts[10][0],kpts[10][1]),(255,255,0),2,8,0)
#left_shoulder->left_hip->left_knee->left_ankle.(5,11),(11,13),(13,15)
cv.line(src,(kpts[5][0],kpts[5][1]),(kpts[11][0],kpts[11][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[11][0],kpts[11][1]),(kpts[13][0],kpts[13][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[13][0],kpts[13][1]),(kpts[15][0],kpts[15][1]),(255,255,0),2,8,0)
#right_shoulder->right_hip->right_knee->right_ankle.(6,12),(12,14),(14,16)
cv.line(src,(kpts[6][0],kpts[6][1]),(kpts[12][0],kpts[12][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[12][0],kpts[12][1]),(kpts[14][0],kpts[14][1]),(255,255,0),2,8,0)
cv.line(src,(kpts[14][0],kpts[14][1]),(kpts[16][0],kpts[16][1]),(255,255,0),2,8,0)
forx,y,_,inkpts:
cv.circle(src,(int(x),int(y)),3,(0,0,255),2,8,0)
index+=1
cv.imshow("KeyPointRCNNDetectionDemo",src)
cv.waitKey(0)
cv.destroyAllWindows()
测试与运行结果如下:


基于3050的卡,GPU推理,速度!没办法模型有点大,速度有点慢,需要好N卡加持才能实时检测!

审核编辑:刘清
-
编解码
+关注
关注
1文章
149浏览量
20442 -
python
+关注
关注
57文章
4858浏览量
89600 -
CAF
+关注
关注
1文章
20浏览量
14841
原文标题:姿态评估之使用KeyPointRCNN关键点检测模型轻松搞定!
文章出处:【微信号:CVSCHOOL,微信公众号:OpenCV学堂】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
技术实践:利用房天下 API 按关键词获取房产数据列表
【EASY EAI Nano-TB(RV1126B)开发板试用】AI手部21关键点识别
顺企网平台根据关键词获取企业列表API接口详解与实现
爱回收平台根据关键词获取品牌ID的API接口详解
小红书获取笔记正文和点赞数的API接口
拼多多搜索关键词获取商品信息的API接口
微店API秘籍!轻松获取商品详情数据
材料的晶体结构看不清?EBSD助您获取关键数据
瑞芯微RK3576人体关键点识别算法(骨骼点)
【BPI-CanMV-K230D-Zero开发板体验】人体关键点检测
学会这些方法,轻松搞定SMT贴片加工的坐标获取与校正
SiC MOSFET驱动电路设计的关键点

使用KeyPointRCNN轻松获取人体的17个关键点
评论