0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

FPGA与GPU架构的背景

FPGA之家 来源:FPGA之家 作者:FPGA之家 2022-06-13 09:58 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能AI)模型的规模和复杂度以每年大约 10 倍的速度不断增加,AI 解决方案提供商面临着巨大的压力,他们必须缩短产品上市时间,提高性能,快速适应不断变化的形势。模型复杂性日益增加,AI 优化的硬件随之出现。

例如,近年来,图形处理单元(GPU)集成了 AI 优化的算法单元,以提高 AI 计算吞吐量。然而,随着 AI 算法和工作负载的演变与发展,它们会展现出一些属性,让我们难以充分利用可用的 AI 计算吞吐量,除非硬件提供广泛的灵活性来适应这种算法变化。近期的论文表明,许多 AI 工作负载都难以实现 GPU 供应商报告的全部计算能力。即使对于高度并行的计算,如一般矩阵乘法(GEMM),GPU 也只能在一定规模的矩阵下实现高利用率。因此,尽管 GPU 在理论上提供较高的 AI 计算吞吐量(通常称为“峰值吞吐量”),但在运行 AI 应用时,实际性能可能低得多。

FPGA 可提供一种不同的 AI 优化的硬件方法。与 GPU 不同,FPGA 提供独特的精细化空间可重构性。这意味着我们可以配置 FPGA 资源,以极为准确的顺序执行精确的数学函数,从而实施所需的操作。每个函数的输出都可以直接路由到需要它的函数的输入之中。这种方法支持更加灵活地适应特定的 AI 算法和应用特性,从而提高可用 FPGA 计算能力的利用率。此外,虽然 FPGA 需要硬件专业知识才能编程(通过硬件描述语言),但专门设计的软核处理单元(也就是重叠结构),允许 FPGA 以类似处理器的方式编程。FPGA 编程完全通过软件工具链来完成,简化了任何特定于 FPGA 的硬件复杂性。

FPGA与GPU架构的背景

2020 年,英特尔 宣布推出首款 AI 优化的 FPGA — 英特尔 Stratix 10 NX FPGA 器件。英特尔 Stratix 10 NX FPGA 包括 AI 张量块,支持 FPGA 实现高达 143 INT8 和 286 INT4 峰值 AI 计算 TOPS 或 143 块浮点 16(BFP16)和 286 块浮点 12(BFP12)TFLOPS。最近的论文表明,块浮点精度可为许多 AI 工作负载提供更高的精度和更低的消耗。NVIDIA GPU 同样也提供张量核。但从架构的角度来看,GPU 张量核和 FPGA AI 张量块有很大的不同,如下图所示。

909881c0-eaac-11ec-ba43-dac502259ad0.png

GPU 和 FPGA 都有张量核心。FPGA 有可以在数据流内外编织的软逻辑

90ce859a-eaac-11ec-ba43-dac502259ad0.png

(左)GPU 数据从张量核心处理的内存系统中读取,写回内存系统。(右)FPGA 数据可以从内存中读取,但数据流可以并行安排到一个或多个张量核心。任意数量的张量核心都能以最小的传输开销使用输出。数据可以被写回内存或路由到其他任何地方

英特尔研究人员开发了一种名为神经处理单元(NPU)的 AI 软处理器。这种 AI 软处理器适用于低延迟、低批量推理。它将所有模型权重保持在一个或多个连接的 FPGA 上以降低延迟,从而确保模型持久性。

910acc80-eaac-11ec-ba43-dac502259ad0.png

NPU 重叠架构和用于编程 NPU 软核处理器的前端工具链高级概述

FPGA与GPU性能比较

本次研究的重点是计算性能。下图比较了英特尔 Stratix 10 NX FPGA 上的 NPU 与 NVIDIA T4 和 V100 GPU 运行各种深度学习工作负载的性能,包括多层感知器(MLP)、一般矩阵向量乘法(GEMV)、递归神经网络(RNN)、长期短期记忆(LSTM)和门控循环单元(GRU)。GEMV 和 MLP 由矩阵大小来指定,RNN、LSTM 和 GRU 则通过大小和时间步长来指定。例如,LSTM-1024-16 工作负载表示包含 1024x1024 矩阵和 16 个时间步长的 LSTM。

91486914-eaac-11ec-ba43-dac502259ad0.png

NVIDIA V100 和 NVIDIA T4 与英特尔 Stratix 10 NX FPGA 上的 NPU 在不同批处理规模下的性能。虚线显示 NPU 在批次大小可被 6 整除情况下的性能

从这些结果可以充分地看出,英特尔 Stratix 10 NX FPGA 不仅可以在低批次实时推理时实现比 GPU 高一个数量级的性能,还可以有效地进行高批次实时推理。

由于架构上的差异和灵活编程模型,英特尔 Stratix 10 NX FPGA 还可实现更出色的端到端性能。不会产生与 GPU 相同的开销。

91848282-eaac-11ec-ba43-dac502259ad0.png

短序列和长序列时 RNN 工作负载的系统级执行时间(越低越好)

结论

英特尔 Stratix 10 NX FPGA 采用高度灵活的架构,所实现的平均性能比 NVIDIA T4 GPU 和 NVIDIA V100 GPU 分别高 24 倍和 12 倍。

由于其较高的计算密度,英特尔 Stratix 10 NX FPGA 可为以实际可达到性能为重要指标的高性能、延迟敏感型 AI 系统提供至关重要的功能。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1655

    文章

    22283

    浏览量

    630267
  • 英特尔
    +关注

    关注

    61

    文章

    10275

    浏览量

    179295
  • 算法
    +关注

    关注

    23

    文章

    4760

    浏览量

    97144

原文标题:实际性能超过GPU,英特尔®Stratix®10 NX FPGA如何助您在AI加速领域赢得先机?

文章出处:【微信号:zhuyandz,微信公众号:FPGA之家】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    FPGA+DSP/ARM架构开发与应用

    自中高端FPGA技术成熟以来,FPGA+DSP/ARM架构的硬件设计在众多工业领域得到广泛应用。例如无线通信、图像处理、工业控制、仪器测量等。
    的头像 发表于 10-15 10:39 3661次阅读
    <b class='flag-5'>FPGA</b>+DSP/ARM<b class='flag-5'>架构</b>开发与应用

    如何看懂GPU架构?一分钟带你了解GPU参数指标

    GPU架构参数如CUDA核心数、显存带宽、TensorTFLOPS、互联方式等,并非“冰冷的数字”,而是直接关系设备能否满足需求、如何发挥最大价值、是否避免资源浪费等问题的核心要素。本篇文章将全面
    的头像 发表于 10-09 09:28 578次阅读
    如何看懂<b class='flag-5'>GPU</b><b class='flag-5'>架构</b>?一分钟带你了解<b class='flag-5'>GPU</b>参数指标

    适应边缘AI全新时代的GPU架构

    电子发烧友网站提供《适应边缘AI全新时代的GPU架构.pdf》资料免费下载
    发表于 09-15 16:42 36次下载

    【「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」阅读体验】+NVlink技术从应用到原理

    前言 【「算力芯片 | 高性能 CPU/GPU/NPU 微架构分析」书中的芯片知识是比较接近当前的顶尖芯片水平的,同时包含了芯片架构的基础知识,但该部分知识比较晦涩难懂,或许是由于我一直从事的事芯片
    发表于 06-18 19:31

    GPU架构深度解析

    GPU架构深度解析从图形处理到通用计算的进化之路图形处理单元(GPU),作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算
    的头像 发表于 05-30 10:36 1321次阅读
    <b class='flag-5'>GPU</b><b class='flag-5'>架构</b>深度解析

    ARM Mali GPU 深度解读

    ARM Mali GPU 深度解读 ARM Mali 是 Arm 公司面向移动设备、嵌入式系统和基础设施市场设计的图形处理器(GPU)IP 核,凭借其异构计算架构、能效优化和生态协同,成为全球移动
    的头像 发表于 05-29 10:12 2991次阅读

    又一颗国产GPU芯片成功点亮!6nm制程,自研TrueGPU架构

    电子发烧友网综合报道 近日消息,砺算科技宣布其首颗自研架构全自主知识产权GPU芯片在封装回片后已成功点亮,结果符合预期。   砺算科技成立于2021年,是一家致力于研发高性能GPU的公司。砺算科技首
    发表于 05-29 00:48 2411次阅读

    能效提升3倍!异构计算架构让AI跑得更快更省电

    电子发烧友网报道(文/李弯弯)异构计算架构通过集成多种不同类型的处理单元(如CPU、GPU、NPU、FPGA、DSP等),针对不同计算任务的特点进行分工协作,从而在性能、能效和灵活性之间实现最优平衡
    的头像 发表于 05-25 01:55 3452次阅读

    iTOP-3588S开发板四核心架构GPU内置GPU可以完全兼容0penGLES1.1、2.0和3.2。

    ,8GB内存,32GBEMMC。 四核心架构GPU内置GPU可以完全兼容0penGLES1.1、2.0和3.2。 内置NPU RK3588S内置NPU,支持INT4/INT8/INT16/FP16混合运算
    发表于 05-15 10:36

    fpga和cpu的区别 芯片是gpu还是CPU

    一、FPGA与CPU的区别 FPGA(Field-Programmable Gate Array,现场可编程门阵列)和CPU(Central Processing Unit,中央处理器)是两种不同类
    的头像 发表于 02-01 14:57 3000次阅读

    FPGA+GPU+CPU国产化人工智能平台

    算法架构可快速移植,接口灵活搭配,具备部署灵活、功耗和算力性价比高、支持人工智能推理应用部署等特点。FPGA+GPU+CPU多核异构平台架构示意图前面板实物图前面板
    的头像 发表于 01-07 16:42 1747次阅读
    <b class='flag-5'>FPGA+GPU</b>+CPU国产化人工智能平台

    芯原发布新一代Vitality架构GPU IP系列

    芯原股份近日宣布,正式推出全新Vitality架构的图形处理器(GPU)IP系列。这一新一代GPU架构以其卓越的计算性能和广泛的应用领域,吸引了业界的广泛关注。 Vitality
    的头像 发表于 12-24 10:55 1284次阅读

    芯原推出新一代高性能Vitality架构GPU IP系列

    芯原股份(芯原,股票代码:688521.SH)今日宣布推出全新Vitality架构的图形处理器(GPU)IP系列,具备高性能计算能力,广泛适用于云游戏、AI PC、独立显卡和集成显卡等应用领域。 芯
    的头像 发表于 12-19 15:55 726次阅读

    芯原发布全新Vitality架构GPU IP系列

    芯原股份(芯原,股票代码:688521.SH)今日宣布推出全新Vitality架构的图形处理器(GPU)IP系列,具备高性能计算能力,广泛适用于云游戏、AI PC、独立显卡和集成显卡等应用领域。
    的头像 发表于 12-19 15:26 1208次阅读

    《CST Studio Suite 2024 GPU加速计算指南》

    和不支持的NVIDIA GPU硬件,如支持的有L40S、RTX 5000 Ada Gen等,不支持的如Kepler和Maxwell部分型号被标记为弃用。同时提到GPU计算要求64位计算机架构,不同代
    发表于 12-16 14:25