0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

均衡的秘密之FFE

li5236 来源:一博科技 作者:一博科技 2022-03-30 10:28 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

说完CTLE之后,大家不用猜都知道会讲FFE。的确,FFE(Feed Forward Equalization前向反馈均衡)和前面CTLE有一些相似之处,它们都是模拟的均衡器,同时也是线性的。当然说模拟,线性什么的比较抽象,实际上我认为它们还有更大的相似之处,先卖个关子,下面会描述到。

poYBAGJDwDiAOAnCAABQZkhhl54928.jpg

还是按照上图这个结构分析,FFE的位置在发送端,它是利用波形本身来校正接收到的信号,而不是用波形的阈值(判决逻辑1或0 )进行校正。FFE的作用基本上类似于 FIR(有限脉冲响应)滤波器,它在校正当前比特电压时,使用的是前一个比特和当前比特的电压电平,加上校正因子(抽头系数),来校正当前比特的电压电平。一句话,就是当使用FFE时,是对实际采集到的波形执行均衡算法

pYYBAGJDwDiAINJ2AAA8bzAbcXE144.jpg

那这种对发送的波形进行移位的加加减减,对接收端眼图真的会有改善吗?我们还是以仿真来说明下吧,仿真的速率为25Gbps,其中传输通道损耗如下:

poYBAGJDwDiALotfAABQ3WA4npg377.jpg

无FFE均衡时发送波形和接收眼图如下:

pYYBAGJDwDiAGZkyAACIbqlA64w398.jpg

FFE均衡时发送波形和接收眼图如下:

poYBAGJDwDiAWNM1AACIhRjjCdw918.jpg

的确,使用加加减减之后奇怪波形作为发送端时,接收端眼图可以张开,反而采用原来正儿八经的波形发送,眼图却是闭合。

我们来看看接收端的波形,看看两者差异在哪?

pYYBAGJDwDmAbp7UAACR-Xfuxlg674.jpg

原来眼图闭合的原因和上期的CTLE文章类似,都是由于在长0或长1之后的变化位无法跨过本身的电平门限,也就是说在低频数据之后的高频变换数据由于衰减比较多,因此幅度无法从低频的高电压位拉到相反的正确电平范围内,因此导致“1”不到“1”,“0”不到“0”的情况,眼图自然就闭合了。

为什么文章开头说FFE和CTLE有更大的相似之处?在哪呢?我们把数据波形通过傅里叶变换转到频域上看,大家就知道了。

FFE均衡与否发送端数据和接收端数据的频域幅度分布如下:

poYBAGJDwDmAR0XjAACRpU8XWsk465.jpg

原来,在发送端进行FFE均衡后,其实也相当于一个低通滤波器的效果,事先就把发送信号的低频部分衰减,这样的话在接收端高频和低频幅度的差异就变小了,因此有效的解决了ISI的问题,就能得到张开的眼图。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 滤波器
    +关注

    关注

    162

    文章

    8361

    浏览量

    184786
  • 均衡
    +关注

    关注

    0

    文章

    25

    浏览量

    16138
  • FFE
    FFE
    +关注

    关注

    0

    文章

    8

    浏览量

    1358
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    BMS主动均衡与被动均衡的工程设计差异及核心元器件解析

    在电池管理系统(BMS)设计中,均衡策略始终是工程团队必须优先处理的问题之一。无论是电动两轮车、储能系统还是消费类锂电产品,电芯一致性差都会导致容量无法完全释放、整包寿命降低甚至触发过充风险。工程上
    的头像 发表于 11-17 10:10 235次阅读
    BMS主动<b class='flag-5'>均衡</b>与被动<b class='flag-5'>均衡</b>的工程设计差异及核心元器件解析

    逐流、逐包、Flowlet:哪种负载均衡技术更适合未来网络?

    当前主流的负载均衡技术主要包括三种类型:逐流的ECMP负载均衡、逐包负载均衡以及基于子流(Flowlet)的负载均衡。本文将从技术原理、优缺点及适用场景等方面对这三种技术进行系统对比与
    的头像 发表于 09-22 14:17 1809次阅读
    逐流、逐包、Flowlet:哪种负载<b class='flag-5'>均衡</b>技术更适合未来网络?

    Nginx负载均衡策略选择指南

    上个月,我们的电商系统在大促期间突然出现用户购物车数据丢失的问题。经过排查发现,罪魁祸首竟然是负载均衡策略配置不当!
    的头像 发表于 08-20 16:23 597次阅读

    万里红工作秘密终端安全沙箱系统介绍

    万里红工作秘密终端安全沙箱系统顺利通过国家保密科技测评中心检测,以国家标准安全能力筑牢终端防线,为政企工作秘密和核心数据提供高维度的合规防护,让敏感数据流转更安全、更可信。
    的头像 发表于 08-13 09:14 872次阅读

    超级法拉电容需要接均衡板吗?

    超级法拉电容均衡板通过被动或主动均衡技术,保障串联电容组安全、高效运行,提升循环寿命与电压稳定性。
    的头像 发表于 07-22 09:31 1249次阅读
    超级法拉电容需要接<b class='flag-5'>均衡</b>板吗?

    5.5v 法拉电容 需要均衡吗?

    本文探讨了5.5V法拉电容的电压均衡问题,并分析了失衡可能导致的性能衰减、热失控和安全性问题。电容组的均衡技术为解决这些问题提供了解决方案,可有效提高系统的可靠性。此外,文章还介绍了在不同应用场合下,如何选择适合的电容均衡方案。
    的头像 发表于 07-17 09:23 825次阅读
    5.5v 法拉电容 需要<b class='flag-5'>均衡</b>吗?

    一文详解Nginx负载均衡

    Nginx作为负载均衡器,通过将请求分发到多个后端服务器,以提高性能、可靠性和扩展性。支持多种负载均衡算法,如轮询、最小连接数、IP哈希等,可以根据需求选择适合的算法。
    的头像 发表于 06-25 14:51 868次阅读
    一文详解Nginx负载<b class='flag-5'>均衡</b>

    常见网络负载均衡的几种方式

    常见网络负载均衡的几种方式包括:DNS负载均衡、反向代理负载均衡、IP负载均衡、应用层负载均衡、链路层负载
    的头像 发表于 03-06 11:14 1091次阅读

    FilterBank均衡器插件介绍

    FilterBank是McDSP的第一款产品,是一款均衡器插件,其灵活的设计和丰富的功能集可与任何模拟均衡器相媲美。它可以模拟任何均衡器,也可用于创建独特的自定义均衡器。 Filter
    的头像 发表于 01-17 11:47 908次阅读
    FilterBank<b class='flag-5'>均衡</b>器插件介绍

    了解图形均衡器与参数均衡器的区别

    在音频处理领域,均衡器(Equalizer)是一种用于调整音频信号频率响应的设备或软件工具。它可以帮助我们增强或减弱特定频率范围的声音,以达到改善音质、去除噪音或创造特定音效的目的。图形均衡器和参数
    的头像 发表于 12-26 09:35 3800次阅读

    均衡器调整步骤与注意事项

    均衡器调整步骤 理解均衡器界面 均衡器通常有多个频率滑块,每个滑块对应不同的频率范围。 了解每个滑块对应的频率范围和它们对声音的影响。 设置基准线 将所有滑块设置到中间位置,这是默认的平坦响应状态
    的头像 发表于 12-26 09:33 5059次阅读

    均衡器与音频效果器的区别

    在音频处理中,均衡器和音频效果器是两种常见的设备,它们各自承担着不同的功能,以满足不同的音频处理需求。 均衡器(Equalizer) 均衡器是一种音频处理设备,用于调整音频信号中不同频率成分的相对
    的头像 发表于 12-26 09:31 3888次阅读

    便携式均衡器的优势与使用

    在现代音乐制作和音频消费中,音质的个性化和优化变得越来越重要。便携式均衡器作为一种灵活、高效的音频处理工具,为用户提供了调整和优化音质的可能。 一、便携式均衡器的优势 便携性与灵活性 便携式均衡
    的头像 发表于 12-26 09:30 1253次阅读

    如何使用音频均衡器提高音质

    在音乐制作和音频工程领域,音质的提升始终是追求的目标之一。音频均衡器(EQ)作为调整声音频率的工具,对于改善音质起着至关重要的作用。通过精细的频率调整,我们可以增强或减弱特定频段的声音,以达到更平衡
    的头像 发表于 12-26 09:28 3180次阅读

    常见的lvs负载均衡算法

    常见的lvs负载均衡算法包括轮询(RR)、加权轮询(WRR)、最小连接(LC)、加权最小连接(WLC)、基于局部性的最少链接(LBLC)、带复制的LBLC(LBLCR)、目标地址散列(DH)、源地址
    的头像 发表于 12-12 13:50 937次阅读