0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

寄生电感怎么来的呢

电子设计 来源:电子设计 作者:电子设计 2022-02-12 09:22 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

最近在整理电感的内容,忽然就有个问题不明白了:寄生电感怎么来的呢?一段直直的导线怎么也会存在电感,不是只有线圈才能成为电感吗?

想到以前看的书,这个寄生电感的存在大家都默认是有的,貌似也没有人怀疑这个东西是真的存在吗(还是只有我没怀疑)?说到芯片,就是引脚寄生电感,走线长点,就是引线电感这些东西,说到传输线,也说有寄生电感。那么它们到底是怎么来的呢?

为了搞清这个问题,我查了一些资料,结合自己的思考,把我的想法分享给大家。

电感的定义

首先,要解决上面的问题,咱们必须得认真对待下电感的定义是什么这个问题了,这里要区别下我们用的电感这一元器件,我们想说的是电感的广义定义,不仅仅是刻意做出的器件,还包括无意中形成的电感。

上网查了一下,很多地方定义都不尽相同,先来看看百科的定义。

百度百科定义:电感是闭合回路的一种属性,是一个物理量。当电流通过线圈后,在线圈中形成磁场感应,感应磁场又会产生感应电动势来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感。

有个关键词,就是“闭合回路”,我们见过的电路,基本都是闭合的,不论是直接通过导线直连闭合,还是通过电容耦合过去形成通路。

然而,这个定义不能让我们理解一些问题。比如,我们经常说的引线电感,过孔电感等等。一段引线和过孔等,它们只是构成回路的一部分,然后我们却能通过公式计算出来它们的电感值,说明引线和过孔的电感是固定的,它与回路的其它部分没有关系。我们如何理解这种回路的局部电感呢?

局部电感、导线的电感

电流流过导线,会在导线的周围产生磁场。当导线电流变化时,这个磁场也会变化,变化的磁场会产生电场,这个电场将阻碍电流的变化,而阻碍电流变化的这种能力,就可以理解为电感,因为导线是回路的一部分,所以这部分电感称之为局部电感。

实际上前面所说的回路的总体电感,应是整个回路所有导线相加所得的结果。

pIYBAGAI1SOAWfVTAAB8SWUvJgI641.png

上图来源于《信号完整性与电源完整性分析-第二版》。

本来写到这里,也差不多能扯明白寄生电感,直导线电感怎么来的。不过,我相信,你现在觉得上面这些都是理所当然的,过个两天,又一切归于0。这几句话更像是结论,并不知道是怎么来的,头脑里面也不好建立一个图像场景。

为了更为清晰的理解,于是我又多想了,而且产生了新的问题:貌似我记得麦克斯韦方程组说了,变化的磁场产生的电场是环形电场的,怎么到这了变成了沿着导线了方向了呢?麦克斯韦那是不可能错的了,上图的作者都出书了,也不至于出错吧。

pIYBAGAI1WaANQPKAACUPvXuwng737.png

为了搞清楚,我又只能去翻翻麦克斯韦方程组了,这个方程组说实话,看了好多遍,看了忘,忘了看,不过好在,多看几次,在似懂非懂的道路上,向懂的方向不断进步。

这里主要用到麦克斯韦方程组里面,磁生电的那一个公式,方程式子我就不列了(原因你懂的)。意思就是,任意取一个曲面,如果里面通过的磁感线数量发生变化,那么会在这个曲面感生出电场。示意图如下(图片来源于:长尾科技):

o4YBAGAI1aaAHLJ3AAEEDGCU1AE136.png

知道了这些,那么上面那个问题(产生的电场是环形电场的,怎么到这了变成了沿着导线了方向了呢)就容易明白了,理解过程如下图。

pIYBAGAI1eWAV579AAFZtl0YKSg823.png

我们在通电导线上面和下面对称选两个面,假如电流在曲面1产生的磁场向上,那么在曲面2产生的磁场方向就是向下的,两者是相反的。如果电流减小,那么磁场B会减小,产生的环形电场如黄色线圈,两个曲面的磁场方向不同,所以产生的环形电场是一个顺时针,一个逆时针。两个环形电场在导线上的叠加,电场方向就是沿导线向右的,也说明了此时是阻止电流变小的。

总得来说,一段导线上如果有电流变化,那么会自己产生感应电动势阻止电流的变化,这不就是电感么。

总结

通过以上的内容,个人认为,我们常说的寄生电感,导线电感,等等,其实都是导线自己的变化电流产生变化磁场,而变化磁场又产生反向电场来阻止电流变化,这就是电感的属性。

麦克斯韦建立了电磁场理论,将电学、磁学、光学统一起来,理解起来是比较困难的,我大学学习的时候感觉就是天书。不过随着工作多年,真正想搞清楚一些问题的时候,最终都会去翻一翻,理论与实际结合,感觉真的是不一样,谁用谁知道啊。

本文转载自:硬件工程师炼成之路微信公众号,转载此文目的在于传播相关技术知识,版权归原作者所有,如涉及侵权,请联系小编删除。
审核编辑:何安

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 寄生电感
    +关注

    关注

    1

    文章

    166

    浏览量

    15037
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    寄生电感致电流采样失真:关键问题与解决办法

    寄生电感是诱发电流采样失真的典型隐性干扰源,其主要源于PCB布线、元件引脚及外接导线等环节。在电流变化过程中,寄生电感会感应生成电动势,直接破坏采样精度。尤其在高频、大电流应用场景下,
    的头像 发表于 12-09 09:46 61次阅读
    <b class='flag-5'>寄生</b><b class='flag-5'>电感</b>致电流采样失真:关键问题与解决办法

    详解电容滤波与电感滤波的区别

    在电子电路中,常常会用到滤波电路,尤其是电源芯片,有的是电容滤波,有的是电感滤波,电容和电感滤波的作用看起来差不多,那么它们之间有什么区别?在实际应用中又如何选择
    的头像 发表于 10-23 14:10 4891次阅读
    详解电容滤波与<b class='flag-5'>电感</b>滤波的区别

    1.3 EMC是常规设计准则的例外情况

    和问题。工程师需要解决和分析实际的EMC问题,就需要考虑抽象化生电感寄生电容),元件合在实际电路中的意义和影响。例如,各元件的寄生参数(包括寄生
    的头像 发表于 07-07 17:09 557次阅读
    1.3 EMC是常规设计准则的例外情况

    一文带你了解线路寄生电感对开关器件的影响及解决方案

    寄生电感引发的过电压、振荡和损耗问题日益突显。一、线路寄生电感在电路布局中,导线并非理想的无感导体。电流通过导线时,导线周围会产生磁场,磁场变化又会在导线中产生感
    的头像 发表于 07-02 11:35 1616次阅读
    一文带你了解线路<b class='flag-5'>寄生</b><b class='flag-5'>电感</b>对开关器件的影响及解决方案

    电源功率器件篇:线路寄生电感对开关器件的影响

    影响,会严重影响电源系统的性能和可靠性。在实际应用中,我们需要通过优化电路布局、采用去耦电容与缓冲电路以及选择合适的开关器件等措施有效降低线路寄生电感带来的不利影响。 森木磊石 PPEC inside
    发表于 07-02 11:22

    KiCad-Parasitics:KiCad 寄生参数分析插件

    工具便会计算出这两点之间的直流电阻,同时还会估算出这段走线的寄生电感。 在未来的版本中,插件还将支持计算走线对地平面(ground plane)的寄生电容。 安装方式 打开插件内容管理器: 没有魔法的同学可以使用华秋国内镜像仓库
    的头像 发表于 06-25 11:14 1789次阅读
    KiCad-Parasitics:KiCad <b class='flag-5'>寄生</b>参数分析插件

    高压单端探头设计时,地线处理方法的研究

    本文主要讲述了高压单端探头地线处理方法,包括电磁感应、寄生参数、接地阻抗和实际应用建议。电磁感应和寄生参数会影响测量结果,接地阻抗会影响测量带宽,实际应用建议可以采用接地弹簧和分线技术降低
    的头像 发表于 06-17 16:23 407次阅读
    高压单端探头设计时,地线处理方法的研究

    【干货分享】电源功率器件篇:变压器寄生电容对高压充电机输出功率影响

    效率、增加无功功率,致使输出功率不稳定。在实际应用中,我们需要通过优化变压器设计、补偿无功功率以及增加功率稳定控制有效降低寄生电容带来的不利影响。 森木磊石 PPEC inside 数字电源
    发表于 05-30 11:31

    共模电感(扼流圈)选型

    电路板上的寄生电容或者杂散电容又或者寄生电感和大地相连。差模信号是指两根线直接的信号差值也可以称之为电视差。假设有两个信号V1、V2共模信号就为(V1+V2)/2差模信号就为:对于
    发表于 04-25 16:56

    减少PCB寄生电容的方法

    电子系统中的噪声有多种形式。无论是从外部来源接收到的,还是在PCB布局的不同区域之间传递,噪声都可以通过两种方法无意中接收:寄生电容和寄生电感寄生
    的头像 发表于 03-17 11:31 2237次阅读
    减少PCB<b class='flag-5'>寄生</b>电容的方法

    一文详解寄生参数对栅极震荡的影响

    在现代电子电路设计和应用中,寄生参数是指那些并非设计者最初所期望的,但在电路或元器件中由于物理结构、材料特性或布局布线等因素而自然产生的非预期电气参数。这些参数虽然不是设计之初所考虑的,但它们对电路的性能和行为有着不可忽视的影响。在本次研究中,重点探讨寄生
    的头像 发表于 03-14 13:47 2.3w次阅读
    一文详解<b class='flag-5'>寄生</b>参数对栅极震荡的影响

    ADS1247寄生振荡怎么消除?

    使用AS1247测量mV级别的信号。在输入端用RC加了RFI滤波电路,R为47欧姆,差模滤波电容103,共模滤波电容102,问题表现如下: 当采样率大于20SPS时,有寄生震荡现象,周期大概4-5
    发表于 02-12 06:40

    深入透彻的讲解BUCK电源电感电流纹波率 r 的取值

    工作模式,分别是断续模式(DCM)、临界连续模式(BCM)、连续模式(CCM)。 我们用一副图表示,方便大家对比。那么,纹波率r表示的是什么意思?用书本上的表达是: 另外,根据基本的电感方程V
    发表于 01-17 15:28

    磁珠和电感在电路中的阻抗特性如何

    磁珠和电感在电路中的阻抗特性各有其独特之处,下面将分别进行详细阐述。 磁珠的阻抗特性 磁珠在电路中的主要作用是抑制信号线、电源线上的高频噪声和尖峰干扰。其阻抗特性随着频率的变化而显著变化,具体表现
    的头像 发表于 01-15 15:40 1415次阅读
    磁珠和<b class='flag-5'>电感</b>在电路中的阻抗特性如何<b class='flag-5'>呢</b>?

    CAN通信节点多时,如何减少寄生电容和保障节点数量?

    导读在汽车电子与工业控制等领域,CAN通信至关重要。本文围绕CAN通信,阐述节点增多时如何减少寄生电容的策略,同时从发送、接收节点等方面,讲解保障节点数量及通信可靠性的方法。如何减少寄生电容?增加
    的头像 发表于 01-03 11:41 3557次阅读
    CAN通信节点多时,如何减少<b class='flag-5'>寄生</b>电容和保障节点数量?