0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

台积电5nm SRAM技术细节

电子设计 来源:电子设计 作者:电子设计 2020-12-24 15:56 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

长期以来,技术领先一直是台积电成功的关键。台积电5nm工艺拥有世界上最小的SRAM单元(0.021平方微米),除开创性的器件工艺,例如高迁移率沟道(HMC),极紫外(EUV)图形化的应用外(可在此高级节点上实现更高的良率和更短的生产周期),他们还持续精进其写入辅助(write assist)电路的设计细节以实现这一革命性的工艺技术。

半导体技术的发展一直由应用领域推动,如图1所示,当下的在高性能计算(HPC),人工智能AI)和5G通信,都要求在有限的功耗下实现最高性能。

图1.半导体技术应用的演进。

台积电在IEDM 2019上发布了其5nm工艺,他们在5nm工艺中使用了十几张极紫外(EUV)掩模,每张EUV代替三个或多个浸没掩模以及采用高迁移率沟道(HMC)的以获得更高性能。其5nm工艺自2019年4月起投入风险量产,并于2020年第一季度实现全面量产。

Jonathan Chang等人在ISSCC 2020上展示了用于开发高性能SRAM单元和阵列的技术方案。

FinFET晶体管尺寸的量化一直是主要挑战,并迫使高密度6T SRAM单元中的所有晶体管仅能使用一个Fin。通过设计工艺协同优化(DTCO)对设计进行了优化,以提供高性能和高密度以及高产量和可靠性。图2展示了2011年至2019年的SRAM单元面积的微缩历程。

图2.展示了2011年至2019年的SRAM单元面积微缩历程。

但值得注意的是,2017年至2019年的SRAM单元面积缩小速度远慢于2011年至2017年的速度,这表明SRAM单元的微缩速度没有跟上逻辑区域的部分。在IEDM 2019上,5nm工艺的逻辑密度提高了1.84倍,而SRAM密度仅提高了1.35倍。台积电利用飞行位线(FBL,Flying Bit Line)架构进一步减少了面积,从而节省了5%的面积。5nm SRAM 单元的版图示意图如图3所示。

图3.高密度6T SRAM单元的版图。

为了降低功耗,一种关键方法是降低SRAM阵列的最小工作电压Vmin。5nm工艺中增加的随机阈值电压变化限制了Vmin,进而限制了功耗的降低。SRAM电压减小趋势如图4所示,其中蓝线表示没有写辅助的Vmin,红线表示有写辅助的Vmin,显示了每一代写辅助的巨大好处。可以看出,从7nm到5nm的Vmin几乎没有改善,表明必须通过改善写入辅助电路来进一步降低功耗。本文主要介绍两种写辅助方,以实现较低的Vmin工作电压:负位线(NBL,Negative Bit Line)和降低单元VDD(LCV,Lower Cell VDD)。

图4.没有写辅助(蓝线)和有写辅助(红线)的SRAM工作电压随节点变化图。

SRAM单元示意图如图5所示,显示了PU与传输门晶体管PG之间在写入操作期间的竞争。采用较强的PU晶体管可以获得较高的读取稳定性,但会显着降低写入容限,并导致写入Vmin问题。

图5. SRAM单元示意图,显示了PU和PG 之间在写入过程中的竞争。

改善写入Vmin的第一种方法是降低写入期间的位线电压,称为负位线电压(NBL)。这种方法业界已经使用了几年,使用MOS电容器在位线上产生负偏置信号,但是这种写辅助电路会导致芯片面积增大。此外,固定数量的MOS电容会在短BL配置中引起过高的NBL电平,并可能导致短位线上的动态功耗过大,如图6所示。

图6.固定数量的MOS电容会在短BL配置中引起过高的NBL电平,并可能导致过高的动态功耗,金属电容器NBL可以避免该问题。

通过基于SRAM阵列上方金属线的耦合金属电容器方案,可以避免过压和MOS电容器面积问题。为避免补偿过量,可以使用SRAM阵列位线长度来调节金属电容器的长度,从而节省动态功耗。此外,还可以调节NBL电平,以补偿远侧存储单元上的由于字线IR下降引起的写入能力的损失。

图7中的NBL使能信号(NBLEN)驱动金属电容器C1的一侧为负,该电容在虚拟电容C1处耦合一个负偏置信号。然后接地节点NVSS,通过写驱动器WD和列多路复用器连到选定的位线。

图7. NBLEN将可配置的金属电容器C1 耦合到NVSS。

图8显示了具有不同位线配置的NBL耦合电平,表明可配置金属电容器C1可以随位线长度调节,从而可以减轻具有不同位线长度的耦合NBL电平的变化。

图8.具有不同位线配置的NBL耦合电平。

写入辅助的第二种方法是降低单元VDD(LCV)。LCV的常规技术需要强偏置或有源分压器才能在写操作期间调整列式存储单元的电源电压,但是这些技术在整个工作时间内会消耗大量的有功功率。脉冲下拉(PP,Pluse Pull-down)和电荷共享(CS,Charge Sharing)技术是两种替代解决方案,但PP难以精确计时。因此,如图9所示,台积电提出了使用阵列顶部的金属线作为电荷共享电容器来实现CS方案。

图9.使用SRAM阵列顶部的CS金属走线实现LCV的电荷共享,以实现写辅助。

审核编辑:符乾江
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 台积电
    +关注

    关注

    44

    文章

    5787

    浏览量

    174817
  • IC设计
    +关注

    关注

    38

    文章

    1369

    浏览量

    107925
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    2纳米制程试产成功,AI、5G、汽车芯片

    2nm 制程试产成功 近日,晶圆代工龙头
    的头像 发表于 10-16 15:48 864次阅读

    PCIe 7.0技术细节曝光

    6 月 11 日 PCI SIG官宣 PCI Express 7.0(PCIe 7.0)规范最终版已制定完毕,但几乎没有公开任何技术细节。不过,在 7 月 16 日,PCI-SIG 通过 BrightTalk 公开了一些更详细的技术信息,下面就为大家介绍这些内容。
    的头像 发表于 09-08 10:43 2304次阅读
    PCIe 7.0<b class='flag-5'>技术细节</b>曝光

    揭秘徐工新能源重卡的技术细节

    对于一新能源重卡而言,无论在安全方面多做多少努力都不为过。徐工汽车将新能源重卡的“安全”筑入整车的结构设计中,融进控制系统每一个响应逻辑里,更深藏技术细节的每一行代码之后。
    的头像 发表于 08-11 11:45 1008次阅读

    2nm良率超 90%!苹果等巨头抢单

    当行业还在热议3nm工艺量产进展时,已经悄悄把2nm技术推到了关键门槛!据《经济日报》报道
    的头像 发表于 06-04 15:20 911次阅读

    先进制程涨价,最高或达30%!

    %,最高可能提高30%。   今年1月初也传出过涨价消息,将针对3nm5nm等先进制程技术
    发表于 05-22 01:09 1160次阅读

    2nm制程良率已超60%

    ,较三个月前技术验证阶段实现显著提升(此前验证阶段的良率已经可以到60%),预计年内即可达成量产准备。 值得关注的是,苹果作为战略合作伙伴,或将率先采用这一尖端制程。尽管广发证券
    的头像 发表于 03-24 18:25 1176次阅读

    4nm芯片量产

    率和质量可媲美台湾产区。 此外;还将在亚利桑那州二厂生产领先全球的2纳米制程技术,预计生产时间是2028年。
    的头像 发表于 01-13 15:18 1376次阅读

    消息称3nm5nm和CoWoS工艺涨价,即日起效!

    )计划从2025年1月起对3nm5nm先进制程和CoWoS封装工艺进行价格调整。 先进制程2025年喊涨,最高涨幅20% 其中,对3nm5nm等先进制程
    的头像 发表于 01-03 10:35 1028次阅读

    设立2nm试产线

    设立2nm试产线 已开始在新竹宝山晶圆厂
    的头像 发表于 01-02 15:50 1342次阅读

    2025年起调整工艺定价策略

    近日,据台湾媒体报道,随着AI领域对先进制程与封装产能的需求日益旺盛,计划从2025年1月起,针对其3nm5nm以及先进的CoWoS
    的头像 发表于 12-31 14:40 1312次阅读

    2nm工艺将量产,苹果iPhone成首批受益者

    近日,据媒体报道,半导体领域的制程竞争正在愈演愈烈,计划在明年大规模量产2nm工艺制程。这一消息无疑为整个行业注入了新的活力。 早前,有传言称
    的头像 发表于 12-26 11:22 1023次阅读

    2纳米制程技术细节公布:性能功耗双提升

    在近日于旧金山举行的IEEE国际电子器件会议(IEDM)上,全球领先的晶圆代工企业揭晓了其备受期待的2纳米(N2)制程技术的详细规格。 据
    的头像 发表于 12-19 10:28 1192次阅读

    2nm制成细节公布:性能提升15%,功耗降低35%

    12月17日消息,在于旧金山举行的 IEEE 国际电子器件会议 (IEDM) 上,全球晶圆代工巨头公布了其备受瞩目的2纳米(N2)制程技术的更多
    的头像 发表于 12-18 16:15 1210次阅读

    2纳米制程技术细节公布

    近日,在旧金山举办的IEEE国际电子器件会议(IEDM)上,全球领先的晶圆代工企业揭示了其备受期待的2纳米(N2)制程技术的详尽信息。 据悉,相较于前代制程
    的头像 发表于 12-18 10:35 1220次阅读

    分享 2nm 工艺深入细节:功耗降低 35% 或性能提升15%!

    来源:IEEE 在本月早些时候于IEEE国际电子器件会议(IEDM)上公布了其N2(2nm级)制程的更多细节。该新一代工艺节点承诺实现
    的头像 发表于 12-16 09:57 1866次阅读
    <b class='flag-5'>台</b><b class='flag-5'>积</b><b class='flag-5'>电</b>分享 2<b class='flag-5'>nm</b> 工艺深入<b class='flag-5'>细节</b>:功耗降低 35% 或性能提升15%!