0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

深度学习的火热,GPU面临严峻挑战

454398 来源:ST社区 作者:ST社区 2020-10-15 10:32 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

人工智能兴起之后,安防行业就成为了人工智能技术最大的试验田,也是落地的主要场景之一。

对于视频监控行业来说,在GPU的CUBA模块出现后(相关链接:为何GPU能在安防行业呼风唤雨?十几年前这件事改变了安防前端格局),前端摄像机对GPU的依赖就越来越重,一台摄像机能够搭载什么样的智能算法,算力又如何很大程度上取决于GPU的性能。

然而安防行业是一个场景化的行业,GPU再好也有着它的局限性。在AI发展的浪潮下,越来越多的安防企业选择自研芯片来适应更细分的需求。

各个安防企业都铆足力气或自研或合作生产安防芯片,几乎每隔几天就能蹦出一条非GPU安防芯片问世的新闻,在这个势头下,不少人都在心里打鼓:“是否GPU的王朝就要结束了?”

随着深度学习的火热,GPU面临严峻挑战

王朝是否结束先按下不表,但从2019年全年智能安防芯片的产出来看,ASICFPGA表现优秀,更是有专家表示,在细分场景的深度学习方面安防芯片已经展现出了良好的发展趋势,那么我们今年就来看一下2019年安防芯片得到了哪些发展机遇,又有哪些安防芯片表现出不俗的竞争力。

智慧安防需求多样,AI安防芯片崛起契机来临

在传统的认知中,算法的深度学习都依赖GPU的CUBA模块,根据吴恩达教授在2011的实验结果表明,12颗英伟达GPU可以提供相当于2000颗CPU的深度学习性能。

但CPU作为图像处理器时,设计初衷是为了应对图像处理中的大规模并行计算。因此应用于深度学习时有明显的局限性。

首先就是硬件结构完全由GPU厂商决定(主要是英伟达),其次是在深度学习方面,其效能远低于ASIC及FPGA芯片。

通俗的讲,采用GPU,你可以定制场景化的算法,但硬件性能以及发挥的效率完全是由英伟达决定,且算法的复杂程度还需要卡GPU的效能决定。

尽管GPU目前依靠其优秀的编程环境和顶尖的算力依旧稳坐AI芯片市场NO1的地位,但其他两种芯片已呈现出后来居上之势。

ASIC和FPGA在安防行业越来越得到重视

算力的优势并不是凭空而来,传统的GPU虽然在算力上占尽优势,但存在严重的晶体管堆料的现象,导致其利用效率不高而且造成的功耗远高于其他两种芯片,对于以7X24小时运行的安防设备来说,这样的功耗很难接受。

市场上虽然对这些缺点还算比较容忍,(毕竟客户主要更关心算力)。但长此以往无异于饮鸩止渴。

在设计层面,由于摩尔定律的失效。7nm后制程升级越来越困难,GPU若想保持其算力优势势必还会走“堆料”的路子,在云端市场不断发展的今天,这样的市场越来越难以为继。也导致不少安防厂商纷纷开发自己的ASIC和终端的FPGA市场。

由一家独大,到如今隐隐的三分天下之势,GPU确实该考虑如何更好的适应市场了。

激烈的安防芯片竞争

在AI芯片选择方面,一般是有钱的选择ASIC,早期过渡和追求性价比会选择FPGA。

FPGA的是很多创业公司初期选择的平台,深鉴、寒武纪、地平线、比特大陆都先后使用过FPGA,商汤等视觉公司也应用过FPGA+GPU的解决方案,但当业务发展到一定程度后,都逐步开始转向ASIC。

这是由于其芯片结构决定的,FPGA相比GPU功耗更低,相比ASIC具有更短的开发时间和更低的开发成本。

一句话总结就是方便、性价比高。且由于英特尔于2015年收购了最成功的的FPGA芯片厂商Altera(151亿美元的天价,不得不说英特尔也是给CPU研发部门下了“死命令”),近年来不断推出CPU+FPGA的组合给各个行业都带来了前所未有的AI发展机遇。

成本低、重构灵活成为FPGA最大的竞争筹码

且由于近两年业界对于深度的学习能力大为推崇,在这方面具有优势的FPGA无疑就成为了很多厂商的选择。

相比性价比较高的FPGA,ASIC芯片无疑就彰显了定制化芯片的霸气。除了不能像FPGA那样进行功能扩展和重构以外,ASIC芯片几乎满足了所有安防高端定制化的需求,在功耗、可靠性、体积方面优势很大,尤其是在移动端,其高性能、低功耗的特点成为了众多厂商的首选。

尤其是人工智能越来越深度化的当下,人们对于智能化深度的要求越来越高。相对应的芯片需要运行的算法也越来越复杂,这都要求芯片拥有一套专用的架构与其进行对应,而ASIC芯片完美地满足了这一需求。

而ASIC应用的典型的代表就是知名的Alpha Go的大脑:谷歌研发的TPU芯片,其强大的深度学习能力和较低的功耗都让业内艳羡。

据寒武纪发布的指令集指出,未来ASIC芯片将是AI芯片的核心。

不过研发ASIC芯片的一大难题就是其高昂的成本和较长的开发周期。目前,致力于研发AISC芯片的都是既擅长芯片研发又具备AI算法的行业巨头,适用于已经具有一定规模且需求场景化定制需求的安防大厂。

除了这几大类以外,目前安防行业还有云端芯片和类脑芯片具有强大的竞争力。

不过不管谁将在这场竞争中胜出,GPU在安防行业中的衰落或将成为现实,而在AI芯片的竞争当中谁又能拔得头筹,这还要看他们具体和安防行业的适配程度。

智能芯片市场玩家可不止“御三家”

自研芯片的春天

2019年,我国安防芯片取得了很大的成就,不管是泛用性极广的海思Hi3516CV500、昇腾系列、还是具有超高集成度的国科微GK7205/GK7205S、亦或是致力于智慧城市建设的地平线旭日1.0都向我们揭示了如今安防行业对于定制化AI芯片的渴求。

在新的一年里,随着安防智能化的不断深入,AI芯片行业竞争也会愈加激烈,但无论如何这对于中国安防的发展,都是多了一种选择,也多了一份效能。

编辑:hfy

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • FPGA
    +关注

    关注

    1656

    文章

    22292

    浏览量

    630410
  • asic
    +关注

    关注

    34

    文章

    1269

    浏览量

    124065
  • gpu
    gpu
    +关注

    关注

    28

    文章

    5100

    浏览量

    134478
  • 人工智能
    +关注

    关注

    1813

    文章

    49752

    浏览量

    261624
  • 安防芯片
    +关注

    关注

    1

    文章

    24

    浏览量

    16677
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    亚太地区AI数据中心可持续发展面临重重挑战

    当Chat GPT每秒“吞吐”数万次请求、自动驾驶汽车毫秒级解析路况、AI大模型训练一口“吞”掉百万度电时,我们正亲历着一场由“算力浪潮”驱动的科技革命;与此同时,一个严峻的现实问题也浮出水面:强大的AI背后是对电力的极度渴求,算力增长与能源约束之间的矛盾已成为全球面临
    的头像 发表于 12-10 10:24 318次阅读
    亚太地区AI数据中心可持续发展<b class='flag-5'>面临</b>重重<b class='flag-5'>挑战</b>

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    GPU加速训练(可选) 双轨教学:传统视觉算法+深度学习方案全覆盖 轻量化部署:8.6M超轻OCR模型,适合嵌入式设备集成 无监督学习:无需缺陷样本即可训练高精度检测模型 持续更新:
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    学习模型DLL 硬件联动:支持工业相机硬触发、GPU加速训练(可选) 双轨教学:传统视觉算法+深度学习方案全覆盖 轻量化部署:8.6M超轻OCR模型,适合嵌入式设备集成 无监督
    发表于 12-03 13:50

    AI芯片市场鏖战,GPU与ASIC谁将占据主动?

    ,正围绕性能、成本、灵活性等核心维度展开激烈角逐,各自凭借独特优势占据细分市场,同时也面临着技术迭代与市场需求变革带来的挑战GPU凭借其与生俱来的并行计算基因,成
    的头像 发表于 10-30 12:06 469次阅读
    AI芯片市场鏖战,<b class='flag-5'>GPU</b>与ASIC谁将占据主动?

    工控一体机在轨道交通领域的应用解决方案面临哪些挑战

    在轨道交通领域,工控一体机扮演着关键角色,广泛应用于自动售检票系统、列车运行监控系统、智能调度系统以及车站设备控制系统等多个核心环节。然而,其在实际应用过程中面临着诸多严峻挑战。​
    的头像 发表于 09-08 17:28 639次阅读

    如何在Ray分布式计算框架下集成NVIDIA Nsight Systems进行GPU性能分析

    在大语言模型的强化学习训练过程中,GPU 性能优化至关重要。随着模型规模不断扩大,如何高效地分析和优化 GPU 性能成为开发者面临的主要挑战
    的头像 发表于 07-23 10:34 2048次阅读
    如何在Ray分布式计算框架下集成NVIDIA Nsight Systems进行<b class='flag-5'>GPU</b>性能分析

    FOPLP工艺面临挑战

    FOPLP 技术目前仍面临诸多挑战,包括:芯片偏移、面板翘曲、RDL工艺能力、配套设备和材料、市场应用等方面。
    的头像 发表于 07-21 10:19 1152次阅读
    FOPLP工艺<b class='flag-5'>面临</b>的<b class='flag-5'>挑战</b>

    别让 GPU 故障拖后腿,捷智算GPU维修室来救场!

    在AI浪潮汹涌的当下,GPU已然成为众多企业与科研机构的核心生产力。从深度学习模型训练,到影视渲染、复杂科学计算,GPU凭借强大并行计算能力,极大提升运算效率。然而,就像高速运转的精密
    的头像 发表于 07-17 18:56 855次阅读
    别让 <b class='flag-5'>GPU</b> 故障拖后腿,捷智算<b class='flag-5'>GPU</b>维修室来救场!

    GPU架构深度解析

    GPU架构深度解析从图形处理到通用计算的进化之路图形处理单元(GPU),作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算
    的头像 发表于 05-30 10:36 1340次阅读
    <b class='flag-5'>GPU</b>架构<b class='flag-5'>深度</b>解析

    ARM Mali GPU 深度解读

    ARM Mali GPU 深度解读 ARM Mali 是 Arm 公司面向移动设备、嵌入式系统和基础设施市场设计的图形处理器(GPU)IP 核,凭借其异构计算架构、能效优化和生态协同,成为全球移动
    的头像 发表于 05-29 10:12 3040次阅读

    智慧路灯的推广面临哪些挑战

    引言 在智慧城市建设的宏伟蓝图中,叁仟智慧路灯的推广面临哪些挑战?叁仟智慧路灯作为重要的基础设施,承载着提升城市照明智能化水平、实现多功能集成服务的使命。然而,尽管叁仟智慧路灯前景广阔,在推广过程中
    的头像 发表于 03-27 17:02 524次阅读

    军事应用中深度学习挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 827次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1358次阅读

    苹果2025年面临多重挑战

    天风证券知名分析师郭明錤近日发文指出,苹果公司在未来的2025年将面临一系列严峻挑战,这些挑战可能对其市场竞争力产生重大影响。 据郭明錤分析,苹果公司对于iPhone的市场展望持保守态
    的头像 发表于 01-13 13:54 893次阅读

    Triton编译器与GPU编程的结合应用

    优化,以及生成高效的并行执行计划。 GPU编程的挑战 GPU编程面临的主要挑战包括: 编程复杂性 :GP
    的头像 发表于 12-25 09:13 1324次阅读