0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

氮化镓神助攻设计出大功率+小身材的充电器

454398 来源:cfan 作者:cfan 2020-09-02 10:17 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在PC电源和充电器市场,从去年开始便流行起一个名为“GaN”(氮化镓)的概念,并因这项技术的加盟获得了更为出色的电气性能。那么,GaN到底是一种怎样的技术,它能对我们未来的生活产生哪些影响呢?

功率体积闹矛盾

无论是笔记本还是智能手机,专门给适配器/充电器“减肥”是一件非常费力不讨好的事情,毕竟对绝大多数普通消费者而言,有着免费(随机附赠)的不用,为了小一圈的充电器花钱很不经济。

然而,随着USB Type-C接口和USB PD快充成为行业标准之后,新款手机、笔记本(主要是中高端轻薄本)和Switch游戏掌机等数码设备居然用上了同一套充电协议,这意味着研发一款USB PD充电器将拥有无数的“潜在客户”,只要产品够好绝对不愁卖!

于是,小小的充电器也开始了跨界之旅——笔记本适配器号称兼容手机,而手机的充电器则主打能为笔记本供电,出差时一个(PD充电器)在手,全家(随身携带的所有数码设备)不愁。

问题来了,什么样的充电器才够好呢?没错,就是大功率+小身材,也就是当充电器解决矛盾之后的样子。

瘦身的“拖油瓶”

充电器虽然不大,但它内部却集成了包括初级开关管、次级同步整流管、PWM控制器、同步整流控制器、变压器、电解电容整流桥共模电感、慢熔保险丝、快充协议控制芯片和各种MOSFET在内的数十种零部件。

学过初中物理的同学应该都知道,在充电功率相同时,充电器的体积越大散热效果必然越好。如果盲目地在缩小充电器体积的同时提高功率,发热量将难以控制,极端情况下甚至会引起火灾等隐患。

在充电器的内部构成中,MOSFET(金氧半场效晶体管,简称MOS或功率器件)至关重要,它影响着该产品所支持的最大输入/输出功率和功率转换耗损率,也是高负载运行时发热量最大的零部件之一。

一款充电器能否在支持更高功率的同时加以瘦身,最有效的解决方案就是提升MOSFET的性能并降低它的发热量。

可惜,当前用于生产MOSFET的第一代(Ge、Si)和第二代半导体材料(GaAs、InP)在单位体积的功率转换上都遇到了天花板,想进一步提升功率就必须留出足够的散热空间,也就是牺牲体积。

为此,英飞凌曾推出过“Cool MOSFET”(Coolmos),这是一种改进型结构的MOSFET,具有更低的导通电阻、更快的开关速度,可以实现更高的功率转换效率。还记得联想在2018年推出的ThinkPlus口红电源吗?这款超迷你的65W充电器只有成年人的两根手指大小,重量不足120g,堪称充电器领域的“小网红”。

而它能之所以能实现如此迷你身材,就是内置了型号为IPL60R365P7的英飞凌Cool MOSFET芯片。

可惜,哪怕是Cool MOSFET也依旧存在天花板,在65W功率下ThinkPlus的体型就算是极限了。还好,市面上随后出现了一类主打GaN(氮化镓)的迷你充电器,同样是65W的充电功率,体型却比ThinkPlus小了一大圈,几乎和传统手机用的18W快充充电器大小差不多。

那么,这种超迷你的大功率充电器又是怎样炼成的呢?

氮化镓的神助攻

目前主流的MOSFET都是基于Si硅制造的,既然这种半导体材料在高功率下已经不堪重负,那更换另外一种半导体材料不就结了?

于是,一种名为“GaN”(氮化镓)的元素出现了,它是由氮和镓组成的一种人造化合物,与碳化硅(SiC)并称为第三代半导体材料的双雄。

GaN氮化镓材料稳定又坚硬,它的熔点约为1700℃,做成GaN功率器件(GaNFET)后可以在200℃以上的高温下工作。氮化镓比硅材料的禁带宽度大3倍、击穿场强高10倍、饱和电子迁移速度快3倍、热导率高2倍,这些性能提升带来的优势就是它比硅更适合做大功率高频的功率器件。

假如电源插孔内的交流电是一望无际的湖水,充电器内的功率器件就像勺子,需要不断将插孔内的湖水捞出,转化为直流电后再传输给数码设备供电。此时,用MOSFET做的勺子每秒钟只能勺10下,再快就有烧毁罢工的风险。而GaNFET做的勺子每秒则可以勺至少30下,效率高还不怕累。

在这种低损耗和高开关频率特性的帮助下,GaN氮化镓能以更低的发热量去承受更大的功率。因此,功率相同的充电器,采用GaNFET功率器件的产品往往可以做的更轻巧迷你。

需要注意的是,GaN充电器并不是什么新鲜事物,早在2018年底,ANKER就在美国纽约发布了型号为“PowerPort Atom PD 1”的GaN充电器,在年初CES2020大展上亮相的GaN充电器数量更是接近70款,覆盖18W~100W等多个充电功率档位。

还记得2019年10月上市的OPPO Reno Ace吗?这款手机支持高达65W的SuperVOOC 2.0闪充,其标配的充电器就使用了氮化镓,OPPO也因此成为了全球首家在充电器中导入GaNFET的手机厂商。

可惜,OPPO Reno Ace的GaN充电器并不支持PD协议,只有搭配支持自家SuperVOOC 2.0技术的手机才能输出65W,较窄的适用范围注定它很难被大众所熟知。此外。Reno Ace标配的65W充电器体型较大,并没有体现出氮化镓可以帮助充电器瘦身的特性。

今年OPPO还高调发布了125W闪充充电器、110W 超闪mini充电器、65W AirVOOC无线充电器和50W超闪饼干充电器,它们的共性就是身材性感,而且兼容SuperVOOC、VOOC和PD等快充协议,兼容性更好。

而这些新一代闪充充电器可以瘦身的秘诀,依旧是内部加入了氮化镓高频开关。以50W超闪饼干充电器为例,它的厚度仅10.5mm,配合折叠插脚设计,轻松适应日常收纳携带,可轻松放置于衬衫、牛仔裤口袋,超小无负担。

时至今日,引入氮化镓的充电器已经成为高端手机的标配,在第三方PD充电器市场也呈现出了燎原之势,甚至已经出现了支持90W~120W的氮化镓充电器,可以同时为轻薄本和手机满血充电。

小结

抛开GaN氮化镓在其他领域的贡献不谈,单凭它对充电器功率提高和体型缩小的改进来看,就是一项非常值得期待和普及的技术。未来,一个只有1/4烟盒大小的充电器就能具备超过100W的输出功率,兼容所有的数码设备,想想都美妙。同时,我们也希望氮化镓能早日用于游戏本的电源适配器,帮助150W起步的“砖头”瘦身,终结游戏本越来越轻薄而适配器却依旧呆板笨重的历史。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 充电器
    +关注

    关注

    100

    文章

    4374

    浏览量

    121177
  • usb
    usb
    +关注

    关注

    60

    文章

    8374

    浏览量

    281787
  • 氮化镓
    +关注

    关注

    66

    文章

    1858

    浏览量

    119231
  • type-c
    +关注

    关注

    556

    文章

    1999

    浏览量

    275186
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    案例分析:米物140W 3C1A智显秒充氮化充电器CA514 Pro

    前言最近充电头网拿到了米物一款140W智显秒充氮化充电器CA514Pro,其配置有3C1A四个接口,不仅支持最高140WPD3.1高性能快充输出,还支持小米120W澎湃秒充,满足全家
    的头像 发表于 12-09 09:23 184次阅读
    案例分析:米物140W 3C1A智显秒充<b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>充电器</b>CA514 Pro

    芯导科技功率MOSFET在绿联速显充160W多口氮化充电器的应用

    近日,绿联新推出了一款速显充160W多口氮化充电器,这款充电器具备4个USB-C接口和1个USB-A接口,总输出功率为160W。机身一侧设
    的头像 发表于 11-17 15:08 450次阅读
    芯导科技<b class='flag-5'>功率</b>MOSFET在绿联速显充160W多口<b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>充电器</b>的应用

    氮化快充芯片U8725AHE的工作原理

    氮化充电器的高功率密度,能在很小的体积里给出更高的功率,所以氮化
    的头像 发表于 07-18 16:08 2809次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>快充芯片U8725AHE的工作原理

    氮化快充IC U8733L的工作原理

    通常来讲,充电器输出功率的增加,充电器的体积也要相应扩大。因为内置GaN芯片的使用,快充充电器拥有小体积、高性能、协议多、节能高等特点,所以快充充电
    的头像 发表于 07-15 15:26 2442次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>快充IC U8733L的工作原理

    氮化GaN快充芯片U8732的特点

    氮化充电器与普通充电器充电效率方面对比,性能遥遥领先。它支持多种快充协议,如PD、QC等,能够智能识别设备所需的
    的头像 发表于 05-23 14:21 817次阅读

    化工厂通信 “破圈密码”:Profinet 转 Modbus RTU 网关 “神助攻

    化工厂通信 “破圈密码”:Profinet 转 Modbus RTU 网关 “神助攻
    的头像 发表于 04-07 17:32 498次阅读
    化工厂通信 “破圈密码”:Profinet 转 Modbus RTU 网关 “<b class='flag-5'>神助攻</b>”

    大功率充电桩面临哪些测试考验?

    大功率充电正成为充电桩行业新亮点大功率充电桩主要集中在公共充电桩里的直流桩,也就是我们通常所说的
    的头像 发表于 03-31 09:33 987次阅读
    <b class='flag-5'>大功率</b><b class='flag-5'>充电</b>桩面临哪些测试考验?

    氮化(GaN)充电头安规问题及解决方案

    什么是氮化(GaN)充电头?氮化充电头是一种采用氮化
    的头像 发表于 02-27 07:20 4197次阅读
    <b class='flag-5'>氮化</b><b class='flag-5'>镓</b>(GaN)<b class='flag-5'>充电</b>头安规问题及解决方案

    氮化硼散热材料大幅度提升氮化快充效能

    什么是氮化(GaN)充电头?氮化充电头是一种采用氮化
    的头像 发表于 02-26 04:26 1046次阅读
    <b class='flag-5'>氮化</b>硼散热材料大幅度提升<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>快充效能

    能源管理系统凭什么成为企业降本 “神助攻”?

    能源管理系统是企业降本的重要“神助攻”,它能实时采集、监测能源数据,进行深度分析和诊断,为企业提供优化控制方案。企业应积极应用能源管理系统,以减少能源浪费,降低能源成本。
    的头像 发表于 02-24 11:35 567次阅读
    能源管理系统凭什么成为企业降本 “<b class='flag-5'>神助攻</b>”?

    安克Zolo 20W氮化充电器拆解报告

    前言 近期充电头网拿到了知名品牌ANKER安克一款Zolo充电器,这款产品基于华源智信氮化方案设计,因此整体做到相当小巧,搭配可折叠插脚,便携性很好。
    的头像 发表于 02-14 14:46 1930次阅读
    安克Zolo 20W<b class='flag-5'>氮化</b><b class='flag-5'>镓</b><b class='flag-5'>充电器</b>拆解报告

    深圳银联宝科技氮化芯片2025年持续发力

    ,还不会占据过多空间,有助于设备的小型化设计。在充电器制造方面更是如此,如今消费者对充电器的便携性要求越来越高,氮化芯片可以让充电器在体积
    的头像 发表于 02-07 15:40 870次阅读
    深圳银联宝科技<b class='flag-5'>氮化</b><b class='flag-5'>镓</b>芯片2025年持续发力

    氮化充电器和普通充电器有啥区别?

    功率下体积更小,且散热更优秀,轻松实现小体积大功率。 既然氮化这么好?为什么不早点用? 原因很简单:之前氮化
    发表于 01-15 16:41

    倍思氮化充电器分享:Super GaN伸缩线快充35W

    快节奏的时代,在旅游、办公等场景下,一款高效、便捷的充电器可以让我们的生活更便捷、高效。今天就给大家推荐一款倍思氮化充电器——Super GaN伸缩线快充35W。它具备多重亮点,可以
    的头像 发表于 01-04 09:41 1109次阅读

    U2281:高功率手机充电器ic

    控制ic,最大输出功率高达80W。U2281不仅拥有着大功率输出,可以让手机快速恢复能量,还保持着低成本、节能的特性,无论你选择应用在什么电源项目,都能做到低投入、高回报! 手机充电器ic U2281可以轻松满足六级节能标准和E
    的头像 发表于 12-19 11:13 1095次阅读