0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

50kW/L功率密度,3.3美元/kW成本的电机实现难点是什么?

荷叶塘 来源:电子发烧友 作者:程文智 2019-10-29 09:28 次阅读


美国能源部旗下有一个叫做U.S. DRIVE的组织,专门负责汽车技术的规划,它的全称是U.S. Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability, 这个组织既有政府背景也有企业支持,成员包括福特、通用UQM等生产企业,以及Electric Power Research Institute,橡树岭国家实验室(OAK RIDGE National Laboratory)等研究机构。该组织在2017年的时候发布了一个电动汽车发展2025年路线图规划。
在该规划中,他们给电机和电控的发展定了一个目标,那就是到2025年时,电机控制器的效率不能低于98%;功率密度要达到100kW/L;成本要降到2.7美元/kW。电机的效率不能低于97%;功率密度要达到50kW/L或5.7kW/kg;成本要低于3.3美元/kW。
单看这些数字,可能感觉不到这些数字对电机控制器和电机厂商的要求有多高,要是跟U.S. DRIVE在2013年定的目标比较一下的话,你的感触可能会更深一点(见表1)。而且这个目标目前只有少数几家企业能够达到。

表1:U.S. DRIVE发布的电机控制器和电机的目标规划。

表1:U.S. DRIVE发布的电机控制器和电机的目标规划。(数据来源:U.S. DRIVE,电子发烧友制表)
从表1中,我们可以清楚地看到提升最大的当属功率密度,功率密度有两个数值,一个是相对于体积的,一个是相对于重量的。汽车用的电机更加侧重于功率体积比,因为体积涉及到汽车的有效空间利用和乘客的体验。电机控制器的功率密度从2020年的13.4kW/L提升到了100Kw/L,提升了7.46倍。电机的功率体积比功率密度则提升了8.77倍。
《中国制造2025重点领域技术路线图》中也提到了国内驱动电机的发展目标:2020年、2025年和2030年乘用车20秒有效比功率要分别达到3.5、4和5kW/kg以上,商用车30秒有效比扭矩要分别达到18、19和20N·m/kg以上。
也就是说功率密度将会成为未来电机控制器和电机设计中一个非常重要的指标。为什么功率密度会受到如此重视?因为高功率密度的电机可以让电机本体的体积更小,重量更轻,效率更高。高功率密度的电机一般在汽车、航空、航天、航海和工业应用中应用更多。
高功率密度就是在一定体积下输出更大的功率,为了实现这一目标,一般采用两种方法来实现,一是提高电机的速度,把电机设计成高速电机(转速一般会超过10000rpm);二是设计新型机构电机。

目标实现的难点在哪里?

这个目标容不容易实现呢?我们可以看看在电动汽车领域技术积累很丰富的丰田。其普锐斯(Prius)的驱动总成Pruis2010的总体成本需要34.9美元/kW,电机的功率密度为2.6kW/L,电机效率还只有85%,离2020年的目标还有很大差距,根据丰田的规划,估计要到2020年才能实现预定目标。

丰田汽车的电机动力总成的成本、功率密度,以及效率参数

表2:丰田汽车的电机动力总成的成本、功率密度,以及效率参数
从丰田的案例来看,这个目标并不那么容易实现,那实现的主要技术障碍在哪里呢?要实现目标,其实最大的障碍是原材料和组件的成本、这些组件封装后的体积、重量和损耗,以及在电机工作时产生的大量热量如何处理。
原材料和组件的成本
为了降低电机的成本,最容易让人想到的肯定是降低最昂贵组件的成本。
在过去的几年中,随着稀土成本的增加,让稀土磁体的成本显著增加,比如一个典型的IPM电机中,稀土磁体占了电机成本的53%。当然电机的具体成本还是取决于电机的结构设计,这只是一个参考。

典型IPM电机的原材料和组件的成本估算。

表3:典型IPM电机的原材料和组件的成本估算。
组件的体积与效率
汽车内留给零件系统的空间越来越小,因此减小组件封装体积是十分必要的。电机体积的减少,受限于目前使用的电工钢中使用的材料所具备的磁通密度和同绕组的电导率等特性,除非可以采用新的材料来改善这些性能,否则减小电机体积最有效的方法,还是提高电机速度。
功率电子器件的体积主要取决于无源器件(电容和电感)的尺寸,以及功率模块等器件的体积。由于汽车内的工作环境相当恶劣,因此,合适的热管理是确保功率电子器件可靠和长时间运行的关键。此外,在功率器件当中,逆变器是最占体积的,最大可占整个功率模块的40%以上的体积,如果再算上冷却设备的话,所占的体积将更大。
橡树岭国家实验室对不同的开关器件进行了对比,对不同开关器件的成本、尺寸、开关速度和工作条件等进行了对比。

不同开关的成本、性能、尺寸等参数对比。

表4:不同开关的成本、性能、尺寸等参数对比。(数据来源:橡树岭国家实验室)
当然,如果要实现2020年和2025年的目标,光靠这些是不够的,还需要新的技术和产品的支持。

橡树岭国家实验室提供的电机性能提升技巧。

图1:橡树岭国家实验室提供的电机性能提升技巧。
在橡树岭国家实验室的研究人员看来,宽禁带产品,比如SiC和GaN产品的应用必不可少。目前也已经有不少企业推出相关的产品,比如罗姆英飞凌、Cree等都有推出SiC产品。SiC的产品在新能源汽车中的应用案例已经不少。
最近,日本一个由2014年诺贝尔物理学奖得主之一,日本名古屋大学教授天野浩领导的研究团队宣布,他们利用GaN研发的逆变器成功应用在了电动汽车上,该逆变器有望让电动汽车节能20%以上。

图2:为实现2025年电机目标,橡树岭国家实验室建议的功率器件选择技巧。
天野浩团队的测试车是“All GaN Vehicle”,于10月24日开幕的第46届东京汽车展上展出,目前可以达到时速50公里,计划年内实现时速100公里。天野浩表示,使用GaN做逆变器的电动汽车尚属世界首例。但目前他们仍然面临装置的可靠性和价格这两样课题研究,他们希望新技术能尽快达到使用标准,争取2025年投入市场。
提高电机的效率有很多好处,比如可以减少热管理系统,从总体上减少体积、重量和成本。
组件重量
因为燃油效率与重量是成反比的,因此减小组件的重量也至关重要。对永磁电机来说,减轻其重量一个有效的办法是提高电机的速度。由于电机的功率与速度成正比,提高电机速度就可以增加功率密度。当前电机的速度在16000rpm~20000rpm之间。
目前高速电机还有一些技术障碍需要突破:首先是高速电机产生的高离心力将使其难以在IPM设计中保留磁体;二是电机转速比较高,电磁负荷相应也会增加,这样就会增加电机单位体积损耗,导致电机零部件的温度上升,进而对冷却方式的要求提高;三是传统齿轮和轴承可能无法承受跟高的速度;四是为了使齿轮箱高速运行而对机械组件的其他要求可能会抵消电机的节省,成本得不到显著降低。

结语

总的来说,要想达到这些目标,现有的技术可能很难达到,必须要探索多种技术,对电机和电力电子设备都进行改进。对电机而言,需要考虑新的电机结构设计、磁体材料和制造方法等;对电力电子设备,要考虑半导体开关、电容、磁性材料、封装和新拓扑结构;除此之外,还需要考虑控制系统组件的温度挑战。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 新能源汽车
    +关注

    关注

    139

    文章

    9501

    浏览量

    97629
  • 电机
    +关注

    关注

    139

    文章

    8245

    浏览量

    141778
  • SiC
    SiC
    +关注

    关注

    27

    文章

    2373

    浏览量

    61367
  • GaN
    GaN
    +关注

    关注

    19

    文章

    1745

    浏览量

    67230
收藏 人收藏

    评论

    相关推荐

    韩国认证:特斯拉Model 3 Performance焕新版功率达461kW

    新款车配置前驱3D3感应异步电机以及后驱4D2永磁同步电机,总计输出215Ps+412Ps(不能直接相加功率),约等于461kW,其中4D2功率
    的头像 发表于 03-06 13:48 135次阅读

    小米超级电机或刷新全球行业“天花板”?

    小米超级电机V8s最大马力为578PS,峰值功率达425kW,峰值扭矩635N·m,最高效率达98.11%,具有全球领先的电机功率密度,高达
    发表于 01-10 16:13 134次阅读
    小米超级<b class='flag-5'>电机</b>或刷新全球行业“天花板”?

    大联大推出3.3KW功率密度双向相移全桥方案

    2024年1月4日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布其旗下品佳推出基于英飞凌(Infineon)XMC4200微控制器和CFD7 CoolMOS MOSFET的3.3KW功率密度双向相移全桥方案。
    的头像 发表于 01-05 09:45 239次阅读
    大联大推出<b class='flag-5'>3.3KW</b>高<b class='flag-5'>功率密度</b>双向相移全桥方案

    一台高压电机额定功率5100KW,那它实际上能输出多少功率

    一台高压电机额定功率5100KW,那它实际上能输出多少功率? 输出功率也就是有功功率,这个应该跟
    发表于 12-27 07:22

    功率设备提升功率密度的方法

    在电力电子系统的设计和优化中,功率密度是一个不容忽视的指标。它直接关系到设备的体积、效率以及成本。以下提供四种提高电力电子设备功率密度的有效途径。
    的头像 发表于 12-21 16:38 295次阅读
    <b class='flag-5'>功率</b>设备提升<b class='flag-5'>功率密度</b>的方法

    5.5kw电机空载电流为额定电流的50%左右,那么是不是说电机此时的功率也是50%左右呢?

    5.5kw电机空载电流为额定电流的50%左右,那么是不是说电机此时的功率也是50%左右呢? 空载
    发表于 12-11 07:15

    充电桩提示功率不足怎么回事 充电桩3.3kw和7kw的区别

    一个功率大一点,一个功率小一点。7kw的充满行驶100公里的大约需要三个多小时,3.3kw的充满行驶100公里的大概需要6到7个小时,大的充电时间短一些,小的充电时间长一些。
    的头像 发表于 12-07 18:11 3068次阅读

    非互补有源钳位可实现超高功率密度反激式电源设计

    非互补有源钳位可实现超高功率密度反激式电源设计
    的头像 发表于 11-23 09:08 290次阅读
    非互补有源钳位可<b class='flag-5'>实现</b>超高<b class='flag-5'>功率密度</b>反激式电源设计

    一般电机2.2KW的话,制动器功率多大?

    偶然看到升降横移车库图纸,请教一下电机下面部分的符号是表示制动器吗?一般电机2.2KW的话,制动器功率多大?
    发表于 11-22 06:46

    一个15kW电机的调试案例分享

    电机铭牌数据: 额定功率:15kW_2极 额定电压:3AC380V_角接 额定电流:27.8A 额定功率因数:0.9 额定频率:50Hz 额
    发表于 11-02 06:05

    功率密度电机的设计方案

    主体结构采用SPM的结构,极槽布置布置采用:12极18槽,最高转速20000rpm,功率密度52.43kW/L,磁钢型蛤采用:N50,硅钢材料采用:Arnon 5
    发表于 10-08 10:48 205次阅读
    高<b class='flag-5'>功率密度</b><b class='flag-5'>电机</b>的设计方案

    功率更大,重量更轻,车企卷向驱动电机功率密度

    ,比如近几年,单电机功率越来越大,功率密度越来越高,每一次性能上的提升都是材料、散热、电路控制方面的进步。   此前《中国制造2025重点领域技术路线图》中的目标是,到2025年和2030年,国内乘用车驱动
    的头像 发表于 08-19 02:26 1884次阅读
    <b class='flag-5'>功率</b>更大,重量更轻,车企卷向驱动<b class='flag-5'>电机</b><b class='flag-5'>功率密度</b>

    基于GaN的1.5kW LLC谐振变换器模块

    为了满足数据中心快速增长的需求,对电源的需求越来越大更高的功率密度和效率。在本文中,我们构造了一个1.5 kW的LLC谐振变换器模块,它采用了Navitas的集成GaN HEMT ic,完全符合尺寸
    发表于 06-16 11:01

    基于GaN器件的电动汽车高频高功率密度2合1双向OBCM设计

    100khz,软开关双向Boost-SRC的开关频率在上面400khz,最大工作频率800khz。PFC电感和变压器体积明显减小,功率密度可达3.9kW/L
    发表于 06-16 08:59

    碳化硅MOSFET在6.6kW高频高功率密度功率变换器中的应用

    kHz和30.500kW/6V输出时,体积和重量减少6%,磁性元件的功率损耗降低400%。实验结果表明,SiC功率器件比硅基功率器件具有卓越的性能,在98 V/5 A输出的转换器中,5
    的头像 发表于 05-20 16:51 1224次阅读
    碳化硅MOSFET在6.6<b class='flag-5'>kW</b>高频高<b class='flag-5'>功率密度</b><b class='flag-5'>功率</b>变换器中的应用