0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

企业中的人工智能并不是神话!

OaXG_jingzhengl 来源:NL 2019-05-09 14:18 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

前两天中国工程院院士徐匡迪先生提的一个问题:“中国有多少科学家投入到人工智能的基础算法研究中?”东南大学教授万遂人强调:“我们人工智能领域真正搞算法的科学家凤毛麟角。”最近几年,AI炒翻天。有太多商业泡沫遮蔽了我们的认知。即便有些虽然看上去合理的讨论,也容易被扭曲。比如,前年下半年、去年上半年,几个行业大人物围绕中美AI核心竞争力做着比较,最后我们大都在强调自己的数据优势、场景优势,而美国强调了自己的算法与底层的综合技术

我们对任何新技术都容易产生误解。AI方面似乎特别明显。这跟它的潜在影响范围已产生一定神话性有关。

“AI通常被误解。因为,我们需要探索一个巨大的宇宙,探索未知会让人感到困惑和恐惧,” Very的工程副总裁Bill Brock说。

对于试图在企业中构建AI实际应用的IT领导者来说,这已成一个特殊问题。

“AI在企业中变得越来越普遍,但应用场景、如何改进或更新过往系统仍有很多误解,”布洛克说,虽然可将“机器人成为同事”的说法“浪漫化”,仍有必要了解不同类型的技术如何增强我们的系统并创造更有效的环境。

事实上,“浪漫化技术”是天空销售推销的主要内容,而非战略CIO通过AI实现的底线结果。

此外,浪漫化的现实往往会产生妨碍可行目标的各种神话。因此,这里请Brock和其他专家确定当今企业中关于AI的常见神话,以帮助IT领导者和其他商业人士将事实与虚构分开。

神话1:AI等于机器学习

不是。理解两者之间的差异,至关重要。机器学习更像是AI的子学科。

“我发现,许多交流中,这些术语之间没什么区别,” SigOpt的研究科学家Michael McCourt说 ,这很有问题。

比如,如果一个公司领导层认为建立分类模型等于使用数据巩固决策过程,就会忽视建立模型的结构和含义的重要步骤。这将导致公司对AI投入不足,没有足够的人力深入更大场景,最后导致失败。

神话2:AI与自动化是一回事

AI和自动化也常常混淆。它们之间确实存在重要的关联。

“随着人们越来越熟悉AI,会了解到它是一种能思考的机器 ,至少能根据一系列预先定义的模型、算法做出明智决策。而‘自动化’只是在没有人为干预的情况下完成任务而已。 ”布罗克说说,“自动化并不一定意味着AI,但AI最具影响力的一些案例,会以戏剧性的方式增强自动化。”

神话3:数据多就能带来更好的AI结果

这误解已深。好像AI成功的唯一真正先决条件是“数据”。

眼下,AI和机器学习团队的工作,几乎完全集中在数据挖掘与清理上。

“重要的不是数据的数量,而是质量,” LexisNexis Legal and Professional首席数据官Rick McFarland认为,“大量不良或标记不统一标的数据,并不能让您更接近结果。它们实际上可以通过创建‘精确’结果来欺骗建模器,因为方差公式与样本大小成反比。”

他说,从早期AI故障中学到的常见经验之一是:我们只是在其中投入大量数据并假设它可行。早期阶段,海量数据未必更好。

“质量数据是有效算法不可或缺的一部分,”Very公司的Brock表示,无论解决什么问题,不良数据都会产生糟糕的结果。

“最佳实践是,使用结构化方法和偏差测试,来创建更好的训练数据集 。”McFarland说,建模人员实际上可使用以较低成本获得的较小数据集。

神话4:AI将从部署一刻起传递价值

不是说数据多反而不好。 事实上,随着时间推移,它会变得越来越必要,只是数量和质量必须同步。一般来说,没有人期望AI计划立马获得投资回报,但有时,很多人还是不断描述,只需打开,就能看到魔术。

“AI和ML引擎需要培训,需要大量数据才能学习。一些数据可以播种,“”NetEnrich首席技术官Javed Sikander说 ,但是,大部分数据来自部署的域,以及AI / ML系统集中学习的地方。因此,期望系统第1天就提出建议和见解并不合理。我们需要建立流程,并在各种环境中分配资源,逐步学习,只有那时才会产生魔力。

神话5:AI和机器学习基本上只是“软件开发”

Algorithmia首席执行官Diego Oppenheimer认为,组织与其他任何软件开发的方式相同,都在接近AI和ML。

“AI / ML开发只是软件开发的一个神话,”奥本海默说,事实上,大多数ML项目失败的很大原因,在于ML工作负载与传统软件行为非常不同,它们需要一套不同的工具、基础架构、流程,才能大规模部署与管理。

奥本海默指出了以下问题:

1、异质性:有一个庞大且不断增长的语言和框架菜单。2、可组合性: AI和ML涉及多组件协同,每个组件可能用不同语言、由不同团队构建。3、开发过程: 传统软件开发中,输出是“受控环境中执行的代码”。机器学习中,输出是“一个不断发展的生态系统”。这需要一个更具迭代的循环。4、硬件/基础设施: CPU、TPU、GPU、边缘计算以及任何新选择, 每个都有不同优势、挑战。5、性能指标: 没有适用于每个人甚至许多人的标准指标集。

神话6:AI只是另一种需要考虑的“技术”

有时,我们通过新旧比较,来让一些令人生畏的东西看起来更容易管理一些。好像往事重现一样。

AllCloud数据与AI副总裁Guy Ernest说 ,这可能会导致IT团队只是将AI视为另一个技术周期。事实上并非如此。

“AI更像人类的大脑或身体:你用得越多,它变得越强大,越聪明。”他说。

他同时强调,大多数技术都很“脆弱”。使用它们越多,它们也会变得越复杂,也就越容易破碎。

神话7:AI只适合科技公司

不。AI并非是每个业务问题的解决方案。

SigOpt的McCourt说,最差的情况是,一家公司可选择退出AI革命,目前趋势若持续下去,也只能让公司跟随而不是领导它。

他说,神话渗透到商业世界,让人以为AI的早期开发者和采用者都是技术最精明和最先进的公司。

神话8:AI取代了对人类智能的需求

AI的神秘地位,部分来自Ai对人类智能的超越。这一时刻,“机器人称霸”的叙事,开始进入高潮。

“机器可以像它们获得的数据以及编程采取的行动一样聪明,”Sikander说,“AI和机器学习可以帮助我们识别数据海洋中的模式,并自动执行操作,几乎不需要人工干预。但是,用于决策的算法和模型,仍必须由人类提供。”

LexisNexis 首席数据官麦克法兰表示,以为AI学习“就像人类一样”,其实是一种误解。

“人类在学习或解决问题方面具有内在的优势。比如无聊,”麦克法兰说,“AI模型永远不会感到无聊或看到自身方式的愚蠢。他们从几乎无限的可能性中寻求最佳答案,甚至深深追逐到一个可能永远出不来的‘兔子洞’(概念来自《爱丽丝梦游仙境》)。相比之下,人类会厌倦追求无限的可能性,会重新考虑现状,主动追求不同的道路。”

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49752

    浏览量

    261624

原文标题:企业中的人工智能:这8个神话已被戳穿!

文章出处:【微信号:jingzhenglizixun,微信公众号:机器人博览】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    商汤科技与智集团合作成果入选首批中央企业人工智能战略性高价值场景

    在第七届世界人工智能大会(WAIC)上,国务院国资委专场发布了首批中央企业人工智能战略性高价值场景,基于商汤科技为智提供的人才发展大模型、
    的头像 发表于 08-12 11:35 1113次阅读

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    的深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入学习人工智能技术的人来说
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    的深度学习,构建起从基础到前沿的完整知识体系,一门实验箱就能满足多门课程的学习实践需求,既节省经费又不占地 。 五、代码全开源,学习底层算法 所有实验全部开源,这对于想要深入学习人工智能技术的人来说
    发表于 08-07 14:23

    关于人工智能处理器的11个误解

    本文转自:TechSugar编译自ElectronicDesign人工智能浪潮已然席卷全球,将人工智能加速器和处理器整合到各类应用也变得愈发普遍。然而,围绕它们是什么、如何运作、能如何增强
    的头像 发表于 08-07 13:21 882次阅读
    关于<b class='flag-5'>人工智能</b>处理器的11个误解

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    软国际携手厦门市共建城市人工智能产业

    近日,软国际与厦门市集美区人民政府、厦门火炬高技术产业开发区管理委员会在此前良好合作的基础上达成新一轮人工智能产业项目合作。三方将基于人工智能大模型创新研发,为厦门软件及制造企业提供
    的头像 发表于 06-03 17:53 906次阅读

    华砺智行荣登2025年度武汉市人工智能新锐企业TOP50榜单

    近日,以“同心赋能・科创融链”为主题的科创供应链人工智能专场对接活动顺利召开。活动现场,《2025年武汉市人工智能企业库报告》、 《2025年度武汉市人工智能新锐
    的头像 发表于 05-26 17:55 972次阅读

    科大讯飞加速东南亚企业的人工智能应用

    现场,OceanDoc全球首发,旨在用AIGC技术提升PPT制作效率。同时,科大讯飞与生态合作伙伴还举行了战略签约仪式,为进一步加速东南亚企业的人工智能应用筑牢根基。
    的头像 发表于 05-06 09:39 698次阅读

    中科曙光获评2025中国人工智能百强企业

    人工智能企业综合实力TOP100”榜单。   中科曙光智能计算产品事业部副总经理胡晓东在演讲中表示,多年来中科曙光针对国产GPU加速卡,先后研发从底层的编程开发软件栈AI Toolkit,到中间
    的头像 发表于 04-27 18:59 871次阅读

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能的人工智能
    发表于 04-23 10:55

    Cognizant将与NVIDIA合作部署神经人工智能平台,加速企业人工智能应用

    -Cognizant将与NVIDIA合作部署神经人工智能平台,加速企业人工智能应用 Cognizant将在关键增长领域提供解决方案,包括企业级AI
    的头像 发表于 03-26 14:42 582次阅读
    Cognizant将与NVIDIA合作部署神经<b class='flag-5'>人工智能</b>平台,加速<b class='flag-5'>企业</b><b class='flag-5'>人工智能</b>应用

    Embarcadero:人工智能驱动发展我们的期望是什么

    发展的方向。 这是一张在simplified.com上,通过提示“屏幕上有人工智能的笔记本电脑”而生成的人工智能图像。这一实现令人印象深刻,但同样任重道远。图像和电影比文本更难处理。难度超过代码了吗? 当今的人工智能 在远程服务
    的头像 发表于 01-15 10:46 647次阅读

    人工智能推理及神经处理的未来

    、个性化和效率的社会需求,又进一步推动了人工智能技术的集成。此外,不断发展的监管体系,则强调了合乎伦理道德的人工智能、数据隐私和算法透明度的重要性,进而指导人工
    的头像 发表于 12-23 11:18 871次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来

    Infosys与谷歌云加强合作,推动企业人工智能创新,建立卓越中心

    利用Infosys Topaz和谷歌云技术,卓越中心将促进共同创新,提供变革性的人工智能解决方案  印度班加罗尔2024年12月19日 /美通社/ -- 下一代数字服务和咨询领域的全球领军者
    的头像 发表于 12-19 15:33 605次阅读

    用ADS1299-FE评估版测试时,在测试的时候VREFP是-2.45,并不是设计所说的4.5v,为什么?

    在用ADS1299-FE评估版测试时 采用内部参考,双电源供电模式 ,-2.5-2.5,但是在测试的时候 VREFP是-2.45,并不是设计所说的4.5v? 在提供的LABview测试时总得不到想看到的结果,想请问一下是什么问题呢? 是10uF电容击穿了?
    发表于 12-16 06:43