0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

革命性的太赫兹单像素成像重建技术,填补太赫兹盲点

MEMS 来源:YXQ 2019-04-22 16:00 次阅读

在几乎所有波长下,工程师们都可以利用电磁天线来探测并记录这些波,并用无线电、微波红外、可见光和X射线等频率创建世界的美妙图像。

但在频谱中有一个“盲点”。波长在1到0.3毫米之间太赫兹频率的探测技术,仍处于起步阶段。能够探测这种辐射的设备往往体积较大且昂贵,并且得到的图像质量较差。因此,这个“盲点”被工程师们称之为“太赫兹空隙”。

为了获得进入宇宙的新窗口,迫切需要一种更好的方法来捕获这些波段。

德国明斯特大学(University of Munster)的Martin Burger及其团队介绍了一种革命性的新成像技术——压缩传感(compressed sensing),更容易捕捉太赫兹空隙电磁频谱。将这项技术应用于太赫兹波段,或有可能改变我们探究世界和宇宙的方式。

太赫兹波可以穿过衣物但不会穿过皮肤或金属。如果你的眼睛能够看到太赫兹波,那人们在你眼里都将不可描述。你还能够看到人们身上携带的钥匙或硬币,或许还有刀和枪。因此,太赫兹成像具有重要的安防应用价值,更不用说隐私问题了。

太赫兹频率难以探测,因为它们位于微波和红外光之间,而这些辐射的探测方法之间存在着很大的差异。

和无线电波一样,微波也是通过以所需的频率来回加速电荷而产生的,在这种情况下,频率可达约300千兆赫。微波的探测可以反过来利用相同的过程。

相比之下,红外波和可见光类似,是通过使合适材料中的电子在两个电子层级之间跃迁而产生的。当产生跃迁所需的能量等于红外光子的能量时,就会产生红外光。同样的反向过程也可以探测红外光子。

产生和探测太赫兹波比较困难,因为它们位于微波和红外之间,这两种技术都不能很好地应用于太赫兹波段。在太赫兹频率加速电荷很难。此外,具有所需带隙以产生太赫兹光子的材料很难找,而那些合格的材料通常必须低温冷却。这就是为什么太赫兹探测器往往体积庞大、昂贵且操作困难的原因。

不过,Burger及其同事表示,压缩传感或能帮助解决这些问题。近年来,这种技术已经风靡成像领域,因为它能够以单像素记录高分辨率图像,即使对于3D成像也是如此。

太赫兹单像素成像中成像平面设置示意图

利用截断振幅流(Truncated Amplitude Flow)和Levenberg-Marquardt方法重建π图像

该技术通过随机化场景的反射光,然后利用单像素记录来工作。这种随机化可以以各种方式完成,但是通常的方案是将光通过一种被称为空间光调制器的数字阵列,显示透明和不透明像素的随机图案。然后重复随机化过程并再次记录光场,多次重复整个过程以产生许多数据点。

起初很难看出这是如何产生图像的,毕竟,光场是随机的。但数据点并非完全随机。实际上,每个数据点都与所有其他数据点相关联,因为它们都来自同一个原始场景。因此,通过找到这种相关性,就可以重新创建原始图像。

事实证明,计算机科学家有各种算法可以进行这种数字运算。其结果是具有一定分辨率的图像,分辨率取决于像素记录的数据点的数量。数据越多,分辨率越高。

这可以直接应用于太赫兹成像。到目前为止,创建2D图像的唯一方法是使用太赫兹探测器阵列或来回扫描单个探测器以绘制光场。由于太赫兹探测器的尺寸较大,这两种技术都不够令人满意。

但压缩传感提供了另一种选择:使用单个太赫兹探测器通过随机化太赫兹光的空间光调制器记录多个数据点。这对于可见光和红外光很有效,许多团队已经成功地利用了这项技术。

不过,太赫兹波段带来了一些额外的复杂问题。例如,因为太赫兹波比光波大两到三个数量级,所以它们更容易发生衍射。这种效应及其它问题引入的畸变,使图像重建更加困难。Burger及其同事正致力于解决这种图像重建的挑战。

他们的研究成果令人印象深刻。该团队展示了显著提高最终图像质量的各种技术。“基于单像素成像的压缩传感,具有减少太赫兹成像测量时间和工作量的巨大潜力,”他们说。

但是,未来还有挑战。问题之一是处理一个以上太赫兹频率构成的图像。这种分析特别重要,因为它提供了关于图像中物质化学组成的光谱信息,例如,结晶粉末到底是面粉还是某种毒品。

但这需要不同类型的成像掩模(mask)。因此,挑战之一在于找到使用最少量掩模创建高光谱图像的最佳方法。

尽管如此,Burger及其团队乐观地认为压缩传感有望快速发展并最终填补“太赫兹空隙”。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 像素
    +关注

    关注

    1

    文章

    195

    浏览量

    18421
  • 太赫兹
    +关注

    关注

    10

    文章

    327

    浏览量

    28832

原文标题:革命性的太赫兹单像素成像重建技术,填补太赫兹盲点

文章出处:【微信号:MEMSensor,微信公众号:MEMS】欢迎添加关注!文章转载请注明出处。

收藏 人收藏

    评论

    相关推荐

    芯问科技太赫兹芯片集成封装技术通过验收

    《半导体芯科技》杂志文章 芯问科技“太赫兹芯片集成封装技术”项目近日顺利通过上海市科学技术委员会的验收。 该项目基于太赫兹通信、太赫兹
    的头像 发表于 04-02 15:23 155次阅读

    交流电50赫兹和60赫兹的区别

    50赫兹,因此60赫兹频率下电流的周期变化更快。 历史背景:50赫兹和60赫兹的频率源于对电力系统的不同偏好和技术标准。欧洲地区通常采用50
    的头像 发表于 02-25 16:57 1384次阅读

    利用太赫兹超构表面开发一款革命性的生物传感器

    据麦姆斯咨询报道,近期,伦敦玛丽女王大学(Queen Mary University of London)和格拉斯哥大学(University of Glasgow)多学科研究人员展开合作,利用太赫兹超构表面(Metasurface)开发了一款革命性的生物传感器
    的头像 发表于 02-25 10:23 268次阅读
    利用太<b class='flag-5'>赫兹</b>超构表面开发一款<b class='flag-5'>革命性</b>的生物传感器

    用单像素赫兹传感器检测材料中的隐藏缺陷

    使用单像素光谱探测器快速检测隐藏物体或缺陷的衍射太赫兹传感器示意图。 在工程和材料科学领域,检测材料中隐藏的结构或缺陷至关重要。传统的太赫兹成像系统依赖于太
    的头像 发表于 01-03 06:33 179次阅读
    用单<b class='flag-5'>像素</b>太<b class='flag-5'>赫兹</b>传感器检测材料中的隐藏缺陷

    高通量太赫兹成像的进展与挑战

    /天体物理学研究等领域有着广泛的应用前景。然而,由于太赫兹波的单像素特性和光栅扫描获取图像数据的要求,现有的太赫兹成像系统需要数十分钟到数十小时的
    的头像 发表于 12-18 06:33 180次阅读
    高通量太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b>的进展与挑战

    像素衍射太赫兹传感器设计的基本原理

    赫兹(THz)波凭借其可以穿透大多数不透光材料的特点,在对材料中隐藏物体和缺陷的无损探测方面具有显著的优势。然而,由于受到成像速度和分辨率的束缚,现有的太赫兹探测系统面临着成像通量和
    发表于 10-31 15:13 261次阅读
    单<b class='flag-5'>像素</b>衍射太<b class='flag-5'>赫兹</b>传感器设计的基本原理

    基于图像传感器阵列的不同太赫兹成像系统的功能和局限性总结

    为了充分发挥太赫兹成像在现实世界中的应用潜力,太赫兹图像传感器阵列和先进计算成像算法的发展,正在逐步解决传统系统冗长的成像过程。
    发表于 10-13 10:35 228次阅读
    基于图像传感器阵列的不同太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b>系统的功能和局限性总结

    高通量太赫兹成像进展与挑战综述

    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。
    的头像 发表于 10-07 15:42 569次阅读
    高通量太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b>进展与挑战综述

    赫兹频段范围是多少赫兹的频率

    赫兹频段是指介于微波和红外光之间的电磁波频段,其频率范围大约在0.1到10太赫兹(THz)之间。这一频段被认为是一种新兴的射频技术,因为它具有许多独特的特性。 太赫兹频段的物理特点
    的头像 发表于 09-26 11:40 1598次阅读

    赫兹频段是什么意思呀?太赫兹频段原理利用什么传递信息?

    赫兹(THz)是介于红外线和微波之间的电磁波频段,其频率范围为0.1-10 THz。近年来,由于其具有穿透力强、非毁损性、高分辨率等优点,太赫兹技术在无损检测、成像、通信、物质识别等
    的头像 发表于 09-20 15:32 771次阅读

    赫兹频段通信技术原理解读 太赫兹频段是什么意思 太赫兹频段通信技术有哪些

    赫兹频段通信技术,是指在介于红外和微波之间的太赫兹频段进行通信和传输信号的技术。太赫兹频段一般被定义为0.1至10太
    的头像 发表于 09-20 14:40 1880次阅读

    赫兹频段范围是多少 太赫兹频段范围怎么算

    赫兹频段范围是多少 太赫兹频段范围怎么算 太赫兹频段是指处于红外光和微波之间的一段频段,通常被定义为100 GHz到10 THz之间的频率范围。这个范围之所以被称为“太赫兹”频段,是
    的头像 发表于 09-19 17:50 2541次阅读

    赫兹频段概述 太赫兹频段是什么 太赫兹频段原理

    赫兹频段概述 太赫兹频段是什么 太赫兹频段原理 太赫兹频段概述 太赫兹频段,也被称为THz频段,指的是在波长为0.1-1毫米,频率为300
    的头像 发表于 09-19 17:50 3125次阅读

    赫兹技术趋势及应用论坛虹科光电精彩演讲

    2023年9月8日,太赫兹技术趋势及应用论坛在深圳光博会期间举办。论坛活动中,虹科光电事业部部长覃琪淋为大家带来了以“太赫兹技术与工业成像
    的头像 发表于 09-14 08:07 594次阅读
    太<b class='flag-5'>赫兹</b><b class='flag-5'>技术</b>趋势及应用论坛虹科光电精彩演讲

    北理工马建军:CMOS硅基太赫兹成像技术

    迄今为止,太赫兹成像分辨力取得了多项技术突破,但硅集成太赫兹成像器的分辨力一直受到衍射极限的限制,只能达到毫米范围的光斑尺寸。生物医学或材料
    的头像 发表于 05-24 10:07 855次阅读
    北理工马建军:CMOS硅基太<b class='flag-5'>赫兹</b><b class='flag-5'>成像</b><b class='flag-5'>技术</b>