0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

功率半导体之战 Ga2O3挑战GaN和SiC

MWol_gh_030b761 来源:未知 作者:胡薇 2018-11-27 14:44 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

半导体世界可能会有一个新的参与者,它以氧化镓技术的形式出现。根据布法罗大学(UB)工程与应用科学学院电气工程副教授Uttam Singisetti博士的说法,这种材料可以在改善电动汽车、太阳能和其他形式的可再生能源方面发挥关键作用,他说,“我们需要具有更强大和更高效的功率处理能力的电子元件。氧化镓开辟了我们用现有半导体无法实现的新可能性。”

电子工业正在尽可能地将硅最大化应用,但其毕竟还是有局限的,这就是为什么研究人员正在探索其它材料,如碳化硅,氮化镓和氧化镓。虽然氧化镓的导热性能较差,但其带隙(约4.8电子伏特或eV)超过碳化硅(约3.4eV),氮化镓(约3.3eV)和硅(1.1eV)的带隙。

带隙可衡量使电子进入导通状态所需的能量。采用高带隙材料制成的系统可以比由带隙较低的材料组成的系统更薄、更轻,并且处理更多的功率。此外,高带隙允许在更高的温度下操作这些系统,从而减少对庞大的冷却系统的需求。

5μm的Ga2O3 MOSFET

Singisetti教授和他的学生(Ke Zang和Abhishek Vaidya)制造了一个由5微米的、由氧化镓制成的金属氧化物半导体场效应晶体管(MOSFET),而一张纸的厚度约为100微米。

研究人员表示,该晶体管的击穿电压为1,850 V,比氧化镓半导体的记录增加了一倍多。击穿电压是将材料(在这种情况下为氧化镓)从绝缘体转换为导体所需的电量。击穿电压越高,器件可以处理的功率越高。

Singisetti表示,由于晶体管的尺寸相对较大,因此不适合智能手机和其他小型设备。但它可能有助于调节大规模运营中的能量流,例如收获太阳能和风能的发电厂,以及电动汽车、火车和飞机等。

“我们通过增加更多的硅来提高晶体管的功率处理能力。不幸的是,这会增加更多的重量,从而降低这些设备的效率,“Singisetti说。“氧化镓可以让我们在使用更少的材料时达到并最终超过硅基器件。这可催生出更轻、更省油的电动汽车。”

然而,要实现这一目标,必须解决一些挑战,他说。特别是,必须设计基于氧化镓的系统以克服材料的低导热性。

该研究得到了美国国家科学基金会,纽约州立大学材料与先进制造卓越网络以及布法罗大学环境与水资源研究与教育研究所(RENEW)的支持。

更多的氧化镓研究

其他研究人员也正在研究氧化镓。在AIP出版社发表在应用物理快报上的一篇文章中,作者Higashiwaki和Jessen概述了使用氧化镓生产微电子的案例。作者专注于场效应晶体管(FET),这些器件可以从氧化镓的大临界电场强度中获益。Jessen所说的质量可以实现具有更小几何结构的FET的设计以及可以破坏任何其他FET材料的侵蚀性掺杂分布。

“微电子世界最大的缺点之一就是充分利用电源:设计人员总是希望减少过多的电力消耗和不必要的热量产生,”空军研究实验室的首席电子工程师Gregg Jessen说。“通常,您可以通过缩小设备来实现此目的。但是,目前使用的技术已经接近其许多应用所需的工作电压极限。它们受到了临界电场强度的限制。”

该材料在各种应用中的灵活性源于其广泛的可能导电性 - 由于其电场强度,从高导电性到非常绝缘性和高击穿电压能力。因此,氧化镓可以达到极端程度。大面积的氧化镓晶圆也可以从熔体中生长,从而降低了制造成本。

“下一个氧化镓应用将是电源的单极FET,”Jessen说。“临界场强是这里的关键指标,它具有卓越的能量密度能力。氧化镓的临界场强是硅的20倍以上,是碳化硅和氮化镓的两倍多。”

作者讨论了Ga2O3晶片的制造方法,控制电子密度的能力以及空穴传输的挑战。他们的研究表明,单极Ga2O3器件将占主导地位。他们的论文还详细介绍了不同类型FET中的Ga2O3应用,以及该材料如何在高压、高功率和功率开关应用中使用。

“从研究的角度来看,氧化镓真的令人兴奋,”Jessen说。“我们刚刚开始了解这些设备在多种应用中的全部潜力,现在是参与该领域的好时机。”

第一个氧化镓MOSFET

FLOSFIA在日本首次成功地证明了使用氧化锌实现常关MOSFET 的可能性 。这是一项具有开创性的工作,因为生产常关MOSFET一直被认为极具挑战性。FLOSFIA计划制造刚玉(corundum,一种晶体结构)α-Ga2O3功率器件,GaO 系列,从TO-220中的肖特基势垒二极管(SBD)开始,然后是MOSFET。

图1:常关Ga2O3MOSFET的I-V曲线

常关MOSFET 的第一个α-Ga2O3(见图1 )由N+源/漏极层,p型阱层,栅极绝缘体和电极组成(见图2 和图3 )。从I-V曲线外推的栅极阈值电压为7.9V。该器件由新型p型刚玉半导体制成,其起到反型层的作用。没有理论研究预测p型材料与n型Ga2O3相容,直到该团队在2016年发现p型Ir2O3,它被认为是非常难以实现的常关MOSFET。

图2:器件的横截面示意图

3:常关Ga2O3MOSFET的光学显微照片

FLOSFIA总部位于日本京都,是京都大学研究的副产品,专门从事雾化学气相沉积(CVD)成膜。利用氧化镓(Ga2O3)的物理特性,FLOSFIA致力于开发低损耗功率器件。该公司成功开发了一种SBD,其具有目前可用的任何类型的最低特定导通电阻,实现与降低功率相关的技术,比以前减少了90%。FLOSFIA现在将开发自己的生产线,着眼于2018年开始商业化生产,其生产各种薄膜、增强MISTDRY技术,实现功率器件的商业化,并实现其技术应用于电极材料、具有功能特性的氧化物电子器件,电镀和聚合物。

综上,氧化镓是一种新兴的功率半导体材料,其带隙大于硅,氮化镓和碳化硅,但在成为电力电子产品的主要参与者之前,仍需要开展更多的研发和推进工作。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • SiC
    SiC
    +关注

    关注

    32

    文章

    3532

    浏览量

    68259
  • GaN
    GaN
    +关注

    关注

    21

    文章

    2335

    浏览量

    79279
  • 功率半导体
    +关注

    关注

    23

    文章

    1411

    浏览量

    45058

原文标题:功率半导体Ga2O3开始挑战GaN和SiC

文章出处:【微信号:gh_030b7610d46c,微信公众号:GaN世界】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    SiC碳化硅功率半导体市场推广与销售赋能综合报告

    和新能源汽车产业链。倾佳电子聚焦于新能源、交通电动化和数字化转型三大方向,并提供包括IGBT、SiC MOSFET、GaN功率半导体器件以及新能源汽车连接器。 倾佳电子杨茜致力于推
    的头像 发表于 11-16 22:45 156次阅读
    <b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>功率</b><b class='flag-5'>半导体</b>市场推广与销售赋能综合报告

    第四代半导体“氧化镓(Ga2O3)”材料的详解

    【博主简介】 本人系一名半导体行业质量管理从业者,旨在业余时间不定期的分享半导体行业中的:产品质量、失效分析、可靠性分析和产品基础应用等相关知识。常言:真知不问出处,所分享的内容如有雷同或是不当之处
    的头像 发表于 09-24 18:23 3980次阅读
    第四代<b class='flag-5'>半导体</b>“氧化镓(<b class='flag-5'>Ga2O3</b>)”材料的详解

    BASiC基本半导体新一代(G3SiC MOSFET特点及设计要点

    BASiC基本半导体新一代(G3SiC MOSFET技术深度分析与应用设计指南 倾佳电子(Changer Tech)是一家专注于功率半导体
    的头像 发表于 09-19 17:34 1011次阅读
    BASiC基本<b class='flag-5'>半导体</b>新一代(G<b class='flag-5'>3</b>)<b class='flag-5'>SiC</b> MOSFET特点及设计要点

    倾佳电子功率半导体驱动电路设计深度解析:SiC MOSFET驱动挑战与可靠性实现

    倾佳电子功率半导体驱动电路设计深度解析:SiC MOSFET驱动挑战与可靠性实现 倾佳电子(Changer Tech)是一家专注于功率
    的头像 发表于 09-14 22:59 789次阅读
    倾佳电子<b class='flag-5'>功率</b><b class='flag-5'>半导体</b>驱动电路设计深度解析:<b class='flag-5'>SiC</b> MOSFET驱动<b class='flag-5'>挑战</b>与可靠性实现

    深爱半导体 代理 SIC213XBER / SIC214XBER 高性能单相IPM模块

    深爱半导体推出新品IPM模块 IPM(Intelligent Power Module,智能功率模块) 是集成了功率器件、驱动电路、保护功能的“系统级”功率
    发表于 07-23 14:36

    氧化镓射频器件研究进展

    氧化镓(Ga2O3 )是性能优异的超宽禁带半导体材料,不仅临界击穿场强大、饱和速度高,而且具有极高的 巴利加优值和约翰逊优值,在功率和射频器件领域具有重要的应用前景。本文聚焦于 Ga2O3
    的头像 发表于 06-11 14:30 1979次阅读
    氧化镓射频器件研究进展

    国产SiC碳化硅功率半导体企业引领全球市场格局重构

    SiC碳化硅MOSFET国产化替代浪潮:国产SiC碳化硅功率半导体企业引领全球市场格局重构 1 国产SiC碳化硅
    的头像 发表于 06-07 06:17 804次阅读

    GaNSiC功率器件深度解析

    本文针对当前及下一代电力电子领域中市售的碳化硅(SiC)与氮化镓(GaN)晶体管进行了全面综述与展望。首先讨论了GaNSiC器件的材料特性及结构差异。基于对市售
    的头像 发表于 05-15 15:28 1551次阅读
    <b class='flag-5'>GaN</b>与<b class='flag-5'>SiC</b><b class='flag-5'>功率</b>器件深度解析

    华大半导体与湖南大学成功举办SiC功率半导体技术研讨会

    近日,华大半导体与湖南大学在上海举办SiC功率半导体技术研讨会,共同探讨SiC功率
    的头像 发表于 02-28 17:33 1091次阅读

    上海光机所在n型β-Ga2O3单晶光电性能调控方面取得进展

    Letters。 β-Ga2O3作为新型极/超宽禁带半导体材料,性能优异、应用广泛、潜力巨大。Ga2O3单晶作为功率器件应用的前提是需要有效的对β-电学性能进行调控,因此
    的头像 发表于 02-28 06:22 720次阅读
    上海光机所在n型β-<b class='flag-5'>Ga2O3</b>单晶光电性能调控方面取得进展

    GaNSafe–世界上最安全的GaN功率半导体

    电子发烧友网站提供《GaNSafe–世界上最安全的GaN功率半导体.pdf》资料免费下载
    发表于 01-24 13:50 0次下载
    GaNSafe–世界上最安全的<b class='flag-5'>GaN</b><b class='flag-5'>功率</b><b class='flag-5'>半导体</b>

    关于超宽禁带氧化镓晶相异质结的新研究

    Ga2O3)晶相异质结(Phase Heterojunction)的新研究发表在《Advanced Materials》上。 论文第一作者为陆义博士 。文章首次在实验中展示了β相和κ相Ga2O3之间
    的头像 发表于 01-22 14:12 1054次阅读
    关于超宽禁带氧化镓晶相异质结的新研究

    40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN!

    BASiC基本半导体40mR/650V SiC 碳化硅MOSFET,替代30mR 超结MOSFET或者20-30mR的GaN! BASiC基本半导体40mR/650V
    发表于 01-22 10:43

    2025年功率半导体行业:五大关键趋势洞察

    趋势一:碳化硅(SiC)与氮化镓(GaN)大放异彩 在功率半导体领域,碳化硅(SiC)和氮化镓(GaN
    的头像 发表于 01-08 16:32 4905次阅读

    探秘GaN功率半导体封装:未来趋势一网打尽!

    GaN功率半导体器件的优异性能要想得到充分发挥,离不开先进的封装技术。本文将深入探讨GaN功率半导体
    的头像 发表于 01-02 12:46 1981次阅读
    探秘<b class='flag-5'>GaN</b><b class='flag-5'>功率</b><b class='flag-5'>半导体</b>封装:未来趋势一网打尽!