0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

锂空气电池和锂硫电池的工作原理和发展中存在的问题

锂电联盟会长 2018-05-05 10:06 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

1锂空气电池

锂空气电池是金属空气电池中的一种,由于使用分子量最低的锂金属作为活性物质,其理论比能量非常高。不计算氧气质量的话,为11140 Wh/kg,实际上可利用的能量密度也可达 1700 Wh/kg,远高于其它电池体系。锂空气电池的基本结构和工作机理如下图所示。

锂空气电池和锂硫电池的工作原理和发展中存在的问题

锂空气电池按使用的电解液的状态不同,主要可分为水体系、有机体系、水-有机混合体系以及全固态锂空气电池。在有机体系锂空气电池工作时,原料O2通过多孔空气电极进入电池内部,在电极表面被催化成O2-或者O22-,接着与电解质中的Li+结合,生成过氧化锂(Li2O2)或氧化锂(Li2O),产物沉积在空气电极表面。当空气电极中的所有的空气孔道都被产物堵塞后,电池放电终止。其电极反应如下所示:

正极:O2+ 2e- + 2Li+↔ Li2O2 ; O2 + 4e- + 4Li+↔2Li2O

负极:Li ↔ Li+ + e-

总反应:2Li + O2↔ Li2O2 (2.96V) ; 4Li + O2↔2Li2O (2.91V)

锂空气电池有着不可比拟的超高能量密度、环境友好以及价格低廉等优势,但其研究尚属初级阶段,存在非常多棘手的问题,主要有:

(1)正极反应需要催化剂。放电过程中,在没有催化剂存在的情况下,氧气还原非常慢;充电过程中,电压平台为 4V 左右,容易造成电解液的分解等副反应。需要使用适当催化剂来帮助电池反应。

(2)锂空气电池是敞开体系,会引发诸如电解液挥发、电解液氧化、空气中的水分和CO2与金属锂反应等一系列致命问题。

(3)空气电极孔道堵塞问题。放电生成不溶于电解液的Li2O和Li2O2会堆积在空气电极中,阻塞空气孔道,导致空气电极失活、放电终止。

综上所述,锂空气电池中存在很多问题亟待解决:包括氧气还原反应的催化、空气电极透氧疏水性、空气电极失活等。虽然锂空气电池取得了一些进步,但要真正应用还有很长一段路要走。

2锂硫电池

锂硫电池研究最早起源于上世纪70年代,但是一直以来锂硫电池的实际容量不高、衰减严重,并未受到重视。2009年,Linda F. Nazar课题组报道了硫碳复合物作为锂硫电池正极材料获得较好的循环性和非常高的放电容量,掀起了锂硫电池研究的热潮。锂硫电池主要使用单质硫或硫基化合物为电池正极材料,负极主要使用金属锂,其电池结构如图所示。

锂空气电池和锂硫电池的工作原理和发展中存在的问题

其中以正极材料为单质硫(主要以S8环形态存在)计算,其理论比容量为 1675 mAh/g,理论放电电压为2.287 V,理论能量密度为2600 Wh/kg。充放电时,电极反应如下所示:

正极:S8(s)+ 2e- + 2Li+↔ Li2S8 ;

Li2S8+ 2e- + 2Li+↔ 2Li2S4 ;

Li2S4+ 2e- + 2Li+↔ 2Li2S2(s) ;

Li2S2(s)+ 2e- + 2Li+↔ 2Li2S(s)

负极:Li ↔ Li+ + e-

总反应:S8(s)+ 16e- + 16Li+↔8Li2S(s)

锂硫电池中,正极材料的反应是一个多电子、多步骤的逐级反应,如图所示。

锂空气电池和锂硫电池的工作原理和发展中存在的问题

以硫放电过程为例,简单可以分为两个阶段,首先固态单质硫S8与Li+生成液态的Li2S8,随着放电程度的深入会经过可溶性Li2S6最终生成可溶性Li2S4,对应电压平台2.4 V - 2.1V,此过程由于有液态物质的生成,反应速度较快。接着随着进一步的放电,在2.1 V电压平台处,可溶性Li2S4转化成不溶性的固相 Li2S2,最后再进一步生成终产物固相的Li2S,由于这一阶段中固体开始生成,使得离子扩散变慢,所以反应速度较缓。不同于传统的锂离子电池材料,锂硫电池充放电时单质硫和硫化锂中间经过多硫化锂Li2Sx(x=2-8)而并不是通过锂离子在正极材料和负极材料之间的往返嵌入和脱嵌来实现充放电的,因此锂硫电池性能受正极材料的锂离子脱嵌能力影响小。

锂硫电池的优势非常明显:具有非常高的理论容量;材料中没有氧,不会发生析氧反应,因而安全性能好;硫资源丰富且单质硫价格极其低廉;对环境友好,毒性小。但锂硫电池真正应用还面临着一些问题,主要包括:

(1)导电性和导锂性差:单质硫中硫分子是以8个S相连组成冠状的S8,属于典型的电子、离子绝缘体,其室温下电导率仅为 5×10-30 S/cm。而且产物Li2S2和Li2S也都是电子绝缘体。因而活性物质的利用率不高、倍率性能不佳。目前主要通过制备小尺寸的硫碳复合材料来解决锂硫电池正极材料的导电性和导锂性问题。

(2)多硫化锂穿梭效应:在锂硫电池充放电过程中,长链多硫化锂Li2Sx(4

锂空气电池和锂硫电池的工作原理和发展中存在的问题

(3)体积膨胀问题:硫在完全充电转化为硫化锂时,体积膨胀达76%,容易引起正极材料的结构被破坏,影响活性物质的稳定性,造成容量衰减。

(4)金属锂负极:由于硫本身不含锂原子,所以必须使用金属锂单质作为负极材料,但这样一来就不可避免会产生锂金属的枝晶问题,带来安全隐患。

尽管锂硫电池还存在着一些问题,近些年随着对锂硫电池研究的深入,通过减小硫颗粒尺寸、对硫材料进行包覆、制备硫碳复合材料、对多硫化锂吸附、改进电解液等多种措施,在提高硫材料的容量和循环性方面取得了很多进步。

在过去的三十多年中,锂电池经历了快速发展,其中以锂离子电池为代表的二次电池体系成为了各种小型便携电子设备的动力来源,极大的推动了电子产品的发展,使得智能手机、平板电脑数码照相机、笔记本电脑等便携设备得以广泛普及。随着社会的不断发展,二次电池在大型电驱动设备中的需求与日俱增,然而锂离子电池中正极材料的理论比容量极限值偏低,在大型电驱动设备的供电系统中显得捉襟见肘。锂空气电池和锂硫电池作为新一代二次电池体系,具有非常高的理论比容量值,受到研究者和二次电池市场的热切关注,然而目前锂空气电池和锂硫电池研究还处于研发阶段,除了电池正极材料的比容量和稳定性需要进一步提高外,电池安全性等关键问题也亟待解决。对于锂电池正极材料工作原理的认识,有助于把握此类电池研究的核心问题,掌握电池正极材料的发展动态。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂硫电池
    +关注

    关注

    7

    文章

    100

    浏览量

    14255
  • 锂空气电池
    +关注

    关注

    1

    文章

    25

    浏览量

    12214

原文标题:后锂离子电池技术展望(下)

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    亿纬能获评第九批国家级制造业单项冠军企业

    近日,广东省工业和信息化厅发布第九批制造业单项冠军企业公示名单,亿纬锰原电池(组)成功获评国家级制造业单项冠军。这是继酰氯
    的头像 发表于 11-06 09:28 447次阅读

    金属电池稳定性能:解决固态电池界面失效的新策略

    固态电池因其高能量密度和增强的安全性而备受关注。然而,固体电解质层与电极之间形成的空隙,已成为制约其长期稳定运行的关键障碍。如今,研究人员通过将一种电化学惰性且机械柔软的金相相整合到金属阳极
    的头像 发表于 10-23 18:02 1358次阅读
    <b class='flag-5'>锂</b>金属<b class='flag-5'>电池</b>稳定性能:解决固态<b class='flag-5'>电池</b>界面失效的新策略

    最近做了一款/钠电瓶保护板设计,想分享给大家

    众所周知, 传统 铅酸电池因环保限制正在逐步退出市场, 更具优势的 **磷酸铁/钠离子电池 **大行其道! 通过对以上两类电池的长期广泛研究和试用测试, 我想分享一款兼容
    发表于 10-22 13:53

    重要突破!中科院团队实现全固态金属电池长循环寿命

    全固态金属电池因其潜在的高能量密度和本征安全性,被视为下一代储能技术的重要发展方向。然而,金属负极与固态电解质之间固-固界面的物理接触失效,是制约其实际应用的关键科学问题。在循环过
    的头像 发表于 10-09 18:05 625次阅读
    重要突破!中科院团队实现全固态<b class='flag-5'>锂</b>金属<b class='flag-5'>电池</b>长循环寿命

    攻克无负极金属电池难题的新钥匙

    “终极选择”的无负极金属电池。这种电池在制造时直接使用铜箔作为负极基底,完全摒弃了传统的石墨等负极活性材料。在充电时,锂离子从正极析出并沉积在铜箔上形成金属负极;
    的头像 发表于 09-11 18:04 539次阅读
    攻克无负极<b class='flag-5'>锂</b>金属<b class='flag-5'>电池</b>难题的新钥匙

    探索磷酸铁(LFP)电池的优势和工艺

    较长、环境友好、功率更高等优点已得到认可。美能光子湾以提供先进的检测设备,可为电池的安全性、稳定性和性能提供了强有力的保障。可再生能源储能的磷酸铁锂电池钴酸(LiCoO
    的头像 发表于 08-05 17:54 1419次阅读
    探索磷酸铁<b class='flag-5'>锂</b>(LFP)<b class='flag-5'>电池</b>的优势和工艺

    在线研讨会 AI赋能电池,开启智能储能新时代

    在全球迈向绿色能源的浪潮,储能技术成为关键一环。而电池作为储能领域的明星,如何通过AI技术实现更高效、更安全的管理?4月29日上午1000,大联大诠鼎集团将联合台塑新智能在大大通直播间为您揭示
    的头像 发表于 04-15 16:33 599次阅读
    在线研讨会 AI赋能<b class='flag-5'>锂</b>铁<b class='flag-5'>电池</b>,开启智能储能新时代

    固态微型电池助力可穿戴设备电源方案突破

    固态微型电池 苹果公司近期宣布将在其可穿戴设备植入可能影响数十亿人的健康功能。Apple Watch现在可提供睡眠呼吸暂停通知功能,而AirPods Pro 2则通过临床级非处方助听器提供全球
    发表于 03-12 09:06 793次阅读
    固态<b class='flag-5'>锂</b>微型<b class='flag-5'>电池</b>助力可穿戴设备电源方案突破

    高临界电流密度固态电池单晶的合成

    金属一直以来被认为是高能量密度电池的理想负极材料。不幸的是,金属负极在实际电流密度下容易形成枝晶,限制了其应用。早期的理论工作预测,具有剪切模量大于8 GPa的固态电解质将抑制
    的头像 发表于 03-01 16:05 1592次阅读
    高临界电流密度固态<b class='flag-5'>电池</b>单晶<b class='flag-5'>锂</b>的合成

    复旦彭慧胜/高悦Nature新突破:外部补技术革新电池性能破解缺难题

    的使用寿命。因此,缺材料被排除在电池设计之外,而当活性锂离子被消耗时,电池就会失效。 在此,复旦大学彭慧胜教授和高悦青年研究员等人通过一种电池级别的
    的头像 发表于 02-14 16:46 2322次阅读
    复旦彭慧胜/高悦Nature新突破:外部补<b class='flag-5'>锂</b>技术革新<b class='flag-5'>电池</b>性能破解缺<b class='flag-5'>锂</b>难题

    EvE酰氯电池ER17505 焊脚3600mAh 3.6V智能水表

    EvE 酰氯电池 ER17505 凭借其高容量、稳定电压和便捷的焊脚设计,成为智能水表的理想电源选择。它不仅保障了我们日常生活中用水数据的准确计量,也推动了智能水表行业的发展。下
    的头像 发表于 02-13 14:49 833次阅读
    EvE<b class='flag-5'>锂</b>亚<b class='flag-5'>硫</b>酰氯<b class='flag-5'>电池</b>ER17505 焊脚3600mAh 3.6V智能水表

    全固态金属电池的最新研究

    成果简介 全固态金属电池因其高安全性与能量密度而备受关注,但其实际应用受限于的低可逆性、有限的正极载量以及对高温高压操作的需求,这主要源于固态电解质(SSE)的低电压还原和高电压分解,以及
    的头像 发表于 01-23 10:52 1597次阅读
    全固态<b class='flag-5'>锂</b>金属<b class='flag-5'>电池</b>的最新研究

    北京大学庞全全电池再发Nature:硫化物基全固态电池

    研究背景 在信息技术、移动通信和电动汽车等领域快速发展的情况下,全球对高能量密度、长寿命电池的需求不断增加。全固态电池具有较高的安全性和比能量,在电动交通和高能量需求应用更具竞争力。
    的头像 发表于 01-20 12:33 2028次阅读
    北京大学庞全全<b class='flag-5'>硫</b>基<b class='flag-5'>电池</b>再发Nature:硫化物基全固态<b class='flag-5'>锂</b><b class='flag-5'>硫</b><b class='flag-5'>电池</b>

    王东海最新Nature Materials:全固态电池新突破

    研究背景 全固态(Li-S)电池因其高的能量密度、优异的安全性和长的循环寿命在下一代电池技术展现出巨大潜力。然而,全固态Li-S
    的头像 发表于 01-09 09:28 1857次阅读
    王东海最新Nature Materials:全固态<b class='flag-5'>锂</b><b class='flag-5'>硫</b><b class='flag-5'>电池</b>新突破

    亿纬能获颁欧盟电池法规(EU 2023/1542)全球首张动力电池TÜV SÜD Mark证书

    证书。这一具有里程碑意义的认证不仅彰显了亿纬能在产品质量、体系管理和可持续发展方面的卓越实力,为亿纬能进一步开拓欧盟市场提供有力支持,也标志着中国动力电池企业在
    的头像 发表于 12-27 17:26 945次阅读
    亿纬<b class='flag-5'>锂</b>能获颁欧盟<b class='flag-5'>电池</b>法规(EU 2023/1542)全球首张动力<b class='flag-5'>电池</b>TÜV SÜD Mark证书