0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

许多不同的硬件架构在深度学习市场中共存

0BFC_eet_china 来源:未知 作者:伍文辉 2017-12-22 08:37 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

在深度神经网络(DNN)发展的简短历史中,业界不断尝试各种可提升性能的硬件架构。通用CPU最容易编程,但每瓦特性能的效率最低。GPU针对平行浮点运算进行了优化,性能也比CPU更高几倍。因此,当GPU供货商有了一大批新客户,他们开始增强设计,以进一步提高DNN效率。例如,Nvidia新的Volta架构增加专用矩阵乘法单元,加速了常见的DNN运算。

即使是增强型的GPU,仍然受其图形专用逻辑的拖累。此外,尽管大多数的训练仍然使用浮点运算,但近来的趋势是使用整数运算进行DNN推论。例如Nvidia Volta的整数性能,但仍然建议使用浮点运算进行推论。芯片设计人员很清楚,整数单元比浮点单元更小且功效更高得多;当使用8位(或更小)整数而非16位或32位浮点数时,其优势更加明显。

相较于GPU,DSP则是针对整数数学而设计的,特别适用于卷积神经网络(CNN)中的卷积函数。向量DSP使用宽SIMD单元进一步加速推论计算,例如,Cadence的C5 DSP核心包括四个2048位宽度的SIMD单元;因此,核心在每个周期内可以完成1,024个8位整数乘法累加(MAC)作业。在16nm设计中,它能每秒处理超过1兆个MAC运算。联发科技(MediaTek)即取得了Cadence的DSP IP授权,用于其最新智能手机处理器的DNN加速器。

新架构的机会

最有效率的架构是从头开始设计DNN,消除其它应用的特性,并针对DNN需要的特定计算进行优化。这些架构能建置于专用ASIC或销售至系统制造商的芯片(这些芯片称为专用标准产品或ASSP)中。最显著的DNN ASIC是Google的TPU,它为推论任务进行了优化,主要包括65,536个MAC单元的脉动数组和28MB内存,以容纳DNN权重和累加器。TPU使用一个简单的四阶流水线,而且只执行少数指令。

多家新创公司也在为DNN开发客制架构。英特尔(Intel)去年收购了其中的一家(Nervana),并计划在今年年底前出样其第一款ASSP;但该公司尚未透露该架构的任何细节。Wave Computing为DNN开发了数据流处理器。其它为此获得众多资金的新创公司包括Cerebras、Graphcore和Groq。我们预计这些公司至少有几家会在2018年投产组件。

另一种建置优化架构的方法是利用FPGA。微软(Microsoft)广泛采用FPGA作为其Catapult和Brainwave计划的一部份;百度(Baidu)、Facebook以及其它云端服务器供货商(CSP)也使用FPGA加速DNN。这种方法避免了数百万美元的ASIC和ASSP投片费用,并提供了更快的产品验证时程;只要设计改动,FPGA就能在几分钟内重新编程和设计。但它们作业于较低的时钟速率,并且比ASIC所能容纳的逻辑块更少得多。图1总结了我们对这些解决方案之间相对效率的看法。

许多不同的硬件架构在深度学习市场中共存
图1:根据不同的硬件设计,各种深度学习加速器之间的性能/功耗比至少存在两个数量级的差异

有些公司藉由客制程度更高的加速器来强化现有设计,从而提供了一定的空间与弹性,例如,Nvidia专为自动驾驶车设计的Xavier芯片增加了一个整数数学模块以加速DNN推论。Ceva和新思科技(Synopsys)设计了类似的单元,以便增强其SIMD DSP核心。这些模块只包含大量的整数MAC单元,从而提高了数学运算效率。然而,由于他们并未置换底层的GPU或DSP架构,所以也不像从头设计那么有效率。

客制设计的挑战之一在于深度学习算法持续迅速发展中。时下最流行的DNN开发工具TensorFlow两年前才出现,数据科学家们已经在评估新的DNN结构、卷积函数和数据格式了。对于两年后的DNN来说,如今为现有工作负载客制的设计可能不再是理想的选择,或甚至无法发挥作用。为了解决这个问题,大多数的ASIC和ASSP设计都是可编程且灵活的,但是FPGA提供了最大灵活度。例如,微软已经将专有的9位浮点格式定义为其Brainwave深度学习平台的一部份。

融会贯通各种选择

纵观深度学习发展史,半导体产业通常首先在通用CPU中实现新应用。如果应用适用于现有的专用芯片,如GPU和DSP,那么接下来可能会转移到这两者。随着时间的推移,如果新应用发展成一个规模市场,业界公司就会开始开发ASIC和ASSP,虽然这些组件可能保留一定的可编程性。只有当算法变得极其稳定时(例如MPEG),才能真的看到以固定功能逻辑的应用建置。

深度学习目前也正按这一发展路线展开。GPU和DSP显然是适用的,而且因需求够高,所以ASIC开始出现。几家新创公司和其它公司正在开发即将在2018年及其后出货的ASSP。至于少量或利基应用,FPGA通常更受欢迎;深度学习已经显示出足以为ASIC投片带来的前景了。

然而,哪一种DNN架构将会胜出?如今看来还不够明朗。尽管深度学习市场正迅速成长,但仍远低于PC、智能手机和汽车市场。因此,ASIC和ASSP的商业案例看起来还微不足道。相形之下,像英特尔和Nvidia这样的公司可以采用来自其它市场的高性能处理器,并增强其深度学习,透过大量的软件支持和持续的更新以提供具竞争力的产品。未来几年,我们将会看到许多不同的硬件架构在深度学习市场中共存。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 深度学习
    +关注

    关注

    73

    文章

    5591

    浏览量

    123920
  • 硬件架构
    +关注

    关注

    0

    文章

    30

    浏览量

    9282
  • dnn
    dnn
    +关注

    关注

    0

    文章

    61

    浏览量

    9451

原文标题:谁才是深度学习架构之王?

文章出处:【微信号:eet-china,微信公众号:电子工程专辑】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战课(11大系列课程,共5000+分钟)

    行业市场具备深度学习能力的视觉系统占比已突破40%,催生大量复合型技术岗位需求: • 岗位缺口:视觉算法工程师全国缺口15万+,缺陷检测专项人才招聘响应率仅32% • 薪资水平:掌握LabVIEW+
    发表于 12-04 09:28

    【团购】独家全套珍藏!龙哥LabVIEW视觉深度学习实战可(11大系列课程,共5000+分钟)

    、锂电池产线的视觉检测工位。 二、职业发展: 目前行业市场具备深度学习能力的视觉系统占比已突破40%,催生大量复合型技术岗位需求: • 岗位缺口:视觉算法工程师全国缺口15万+,缺陷检测专项人才招聘响应率
    发表于 12-03 13:50

    【「AI芯片:科技探索与AGI愿景」阅读体验】+第二章 实现深度学习AI芯片的创新方法与架构

    、Transformer 模型的后继者 二、用创新方法实现深度学习AI芯片 1、基于开源RISC-V的AI加速器 RISC-V是一种开源、模块化的指令集架构(ISA)。优势如下: ①模块化特性②标准接口③开源
    发表于 09-12 17:30

    自动驾驶中Transformer大模型会取代深度学习吗?

    [首发于智驾最前沿微信公众号]近年来,随着ChatGPT、Claude、文心一言等大语言模型在生成文本、对话交互等领域的惊艳表现,“Transformer架构是否正在取代传统深度学习”这一话题一直被
    的头像 发表于 08-13 09:15 3924次阅读
    自动驾驶中Transformer大模型会取代<b class='flag-5'>深度</b><b class='flag-5'>学习</b>吗?

    Transformer架构概述

    由于Transformer模型的出现和快速发展,深度学习领域正在经历一场翻天覆地的变化。这些突破性的架构不仅重新定义了自然语言处理(NLP)的标准,而且拓宽了视野,彻底改变了AI的许多
    的头像 发表于 06-10 14:24 970次阅读
    Transformer<b class='flag-5'>架构</b>概述

    GPU架构深度解析

    GPU架构深度解析从图形处理到通用计算的进化之路图形处理单元(GPU),作为现代计算机中不可或缺的一部分,已经从最初的图形渲染专用处理器,发展成为强大的并行计算引擎,广泛应用于人工智能、科学计算
    的头像 发表于 05-30 10:36 1340次阅读
    GPU<b class='flag-5'>架构</b><b class='flag-5'>深度</b>解析

    Arm 公司面向 PC 市场的 ​Arm Niva​ 深度解读

    子系统(CSS)​ ​ 的垂直领域延伸,Niva 旨在通过软硬件深度整合,解决传统 x86 架构能效比、AI 加速与生态兼容性上的痛点。以下结合技术
    的头像 发表于 05-29 09:56 1313次阅读

    Arm 公司面向移动端市场的 ​Arm Lumex​ 深度解读

    子系统(CSS)​ ​ 移动端的落地形态,Lumex 旨在通过高度集成化的软硬件方案,解决移动设备 AI 性能、能效比与开发效率上的挑战。以下从技术架构、性能突破、应用场景、生态系
    的头像 发表于 05-29 09:54 4055次阅读

    EZ-USB SX3 CYUSB3017-BZXI 能否与PolarFire MicrochipFPGA 同一电气设计中共存

    虽然 SX3 配置实用程序不支持给定的 FPGA,但EZ-USB SX3 CYUSB3017-BZXI 能否与PolarFire MicrochipFPGA 同一电气设计中共存
    发表于 05-23 07:10

    解锁未来汽车电子技术:软件定义车辆与区域架构深度解析

    ️⃣ 颠覆传统架构,定义行业未来 深度解析软件定义车辆(SDV)如何通过集中式软件管理,实现硬件与软件解耦,彻底解决传统域架构的碎片化难题。 揭秘区域控制
    的头像 发表于 04-27 11:58 1096次阅读

    OpenVINO™工具套件的深度学习工作台中无法导出INT8模型怎么解决?

    无法 OpenVINO™ 工具套件的深度学习 (DL) 工作台中导出 INT8 模型
    发表于 03-06 07:54

    军事应用中深度学习的挑战与机遇

    人工智能尤其是深度学习技术的最新进展,加速了不同应用领域的创新与发展。深度学习技术的发展深刻影响了军事发展趋势,导致战争形式和模式发生重大变化。本文将概述
    的头像 发表于 02-14 11:15 827次阅读

    BP神经网络与深度学习的关系

    BP神经网络与深度学习之间存在着密切的关系,以下是对它们之间关系的介绍: 一、BP神经网络的基本概念 BP神经网络,即反向传播神经网络(Backpropagation Neural Network
    的头像 发表于 02-12 15:15 1358次阅读

    AI自动化生产:深度学习质量控制中的应用

    随着科技的飞速发展,人工智能(AI)与深度学习技术正逐步渗透到各个行业,特别是自动化生产中,其潜力与价值愈发凸显。深度学习软件不仅使人工和
    的头像 发表于 01-17 16:35 1220次阅读
    AI自动化生产:<b class='flag-5'>深度</b><b class='flag-5'>学习</b><b class='flag-5'>在</b>质量控制中的应用

    深度自然匿名化:隐私保护与视觉完整性并存的未来!

    科技快速发展的当下,个人隐私保护的需求日益凸显。如何能在隐私保护的基础上,保持视觉完整性,从而推动企业开发与创新? 深度自然匿名化(DNAT)已被证明是传统模糊化方法的更优替代方案,其复杂的算法和深度
    的头像 发表于 01-15 15:57 4811次阅读
    <b class='flag-5'>深度</b>自然匿名化:隐私保护与视觉完整性并存的未来!