0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

更精确操纵光束:新型超表面设计推动光学物理学发展

jf_64961214 来源:jf_64961214 作者:jf_64961214 2024-06-27 06:27 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

wKgZomZ8leKAaGyhAAGA8dMgH48342.jpg

多层自旋多路复用超表面在多路复用衍射神经网络(MDNN)中充当神经元,用于检测和分类矢量结构光束。

在充满活力的光学物理领域,研究人员正在不断突破如何操纵和利用光进行实际应用的界限。

据《Advanced Photonics Nexus》报道,哈尔滨工业大学(HIT)的一项研究介绍了一种分类和区分各种类型矢量结构光束(VSB)的方法,有望在光通信和量子计算领域取得重大进展。论文题为 “利用自旋多路衍射超表面同时分拣任意矢量结构光束”。

与以简单直线轨迹传播的传统光束不同,矢量结构光束可形成复杂、错综复杂的图案。这些光束不仅通过强度和波长等传统方式传输信息,还通过复杂的空间和偏振配置传输信息。它们的多功能性使其成为数据编码和通信的理想选择。

高效管理和利用 VSB 一直是一项重大挑战。它们固有的复杂性要求在实际应用中采用精确的分类和识别方法。提高光通信的效率、带宽和安全性,促进量子计算的创新,都取决于我们能否有效地处理这些错综复杂的光束。

哈工大研究团队研究的核心是一种基于自旋多路衍射超表面的紧凑、高效设备。这种经过精心设计的表面在微观层面上运行,可以非常精确地操纵光束。

该装置引导光束穿过一系列经过精细调整的超表面层。每一层都以精确的方式与光线相互作用,将光线逐步塑造成预定的图案。当光线从设备中射出时,每种 VSB 类型都被明显地分离出来,并可根据其独特的特征进行识别。这种同步分类能力为高维通信和量子信息处理带来了新的可能性。

技术影响包括:

□ 光通信: 以更高的速度传输更多数据并提高安全性仍然是一个关键目标。超表面处理复杂光束的能力表明,数据传输模式有可能发生转变,从而提高现有物理基础设施的效率。

□ 量子计算: 量子信息处理从根本上有别于经典计算。对光束的精确控制为加速量子计算系统提供了新的途径。

挑战与展望

虽然这项研究取得了巨大进步,但将该设备集成到现有技术框架中并优化其实际应用仍具有挑战性。不过,研究人员对其未来的影响持乐观态度,并在积极完善这项技术。

该研究的资深通讯作者丁卫强教授说:“我们在光操纵技术方面取得的突破,标志着我们向复杂光束的实际应用迈出了关键一步。通过促进对这些光束的精确控制,该技术不仅增强了现有能力,还为科学探索开辟了新途径。”

从实验室创新到广泛实际应用的过程是错综复杂的,但随着这些开创性的进步,通向日常集成的道路变得越来越清晰可见。

审核编辑 黄宇

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 光通信
    +关注

    关注

    20

    文章

    983

    浏览量

    35225
  • 光束
    +关注

    关注

    0

    文章

    92

    浏览量

    10822
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    新型椭圆偏振法SHEL在纳米尺度面积表面测量的应用

    纳米技术的发展催生了从光滑表面到复杂纳米结构表面的制备需求,这些表面精确测量对质量控制至关重
    的头像 发表于 11-24 18:02 1634次阅读
    <b class='flag-5'>新型</b>椭圆偏振法SHEL在纳米尺度面积<b class='flag-5'>表面</b>测量的应用

    光学表面在成像和传感中的应用

    和传感技术中的各种应用以及这些领域的最新进展。 光学表面研究背景 几十年来,物理学家和工程师一直对光学
    的头像 发表于 11-05 09:09 172次阅读

    光学频率梳:光学测量与通信的革命性工具

    (JohnL.Hall)和西奥多·亨施(TheodorW.Hänsch)因在光学频率梳技术方面的突破性贡献而获得诺贝尔物理学奖。霍尔和亨施的工作主要集中在精确测量和控制
    的头像 发表于 08-27 11:30 1001次阅读
    <b class='flag-5'>光学</b>频率梳:<b class='flag-5'>光学</b>测量与通信的革命性工具

    校企联动共话未来:西电物理学院师生走进御芯微探秘“芯片密码”

    7月25日,西安电子科技大学物理学院师生一行走进重庆御芯微信息技术有限公司,开启了一场集技术洞察、行业认知与职业规划于一体的深度交流。御芯微人力总监、技术总监等核心团队成员全程接待,这场校企对话不仅
    的头像 发表于 07-30 09:45 602次阅读
    校企联动共话未来:西电<b class='flag-5'>物理学</b>院师生走进御芯微探秘“芯片密码”

    CST+FDTD表面逆向设计及前沿应用

    表面逆向设计作为当前光学和光电子领域的前沿技术,正受到全球科研人员和工程师的广泛关注。表面逆向设计不仅能够实现传统
    的头像 发表于 06-05 09:29 589次阅读
    CST+FDTD<b class='flag-5'>超</b><b class='flag-5'>表面</b>逆向设计及前沿应用

    VirtualLab Fusion:平面透镜|从光滑表面到菲涅尔、衍射和透镜的演变

    ,提供了设计用于多色光的平面光学的见解[2]。 从功能透镜的规格开始,设计透镜表面的目标是用一个物理透镜替代功能透镜,以实现指定的单场或多场转换。在近轴近似内,表面的设计通过单个球面解
    发表于 05-15 10:36

    《FDTD Solutions仿真全面教程:表面光束操控的前沿探索》

    Science上的论文 6、PB型表面设计:生成Airy光束 ----(根据发表在ACS NANO上的论文) 7、传输型表面设计:生
    发表于 04-22 11:59

    VirtualLab Fusion应用:多层表面空间板的模拟

    表面制作空间板模型 分层材料(\"空间板\")用于模仿自由空间中比元件实际厚度长得多的传播,同时保持原始光学系统的成像特性。 分层介质元件 本用例介绍了分层介质元件,并概述了其选项、设置和电磁场求解器。
    发表于 04-09 08:51

    西安光机所等最新研究拓展了表面在偏振光学中的应用

    图1.表面广义相位调控框架概念示意图 表面是由亚波长间隔的光学散射体组成的平面光学器件,能够
    的头像 发表于 03-17 06:22 604次阅读
    西安光机所等最新研究拓展了<b class='flag-5'>超</b><b class='flag-5'>表面</b>在偏振<b class='flag-5'>光学</b>中的应用

    VirtuaLab Fusion:从光线光学物理光学的无缝转换

    (Field T racing)级别1建模以获得最初的物理光学结果。 5.场追迹(Field T racing)级别2为大多数光学系统(包括透镜系统)提供精确的建模结果。如果1级和2级建模产生相同的结果
    发表于 03-14 08:54

    锁相放大器在物理学中的应用

    物理学的研究中,信号的精确测量与分析一直是科学实验的关键。随着技术的发展,许多实验中涉及到的信号越来越微弱,传统的仪器设备很难直接检测这些信号。如何有效地提取微弱信号,特别是从噪声中区分出有用信号
    的头像 发表于 02-11 16:35 771次阅读
    锁相放大器在<b class='flag-5'>物理学</b>中的应用

    神经网络理论研究的物理学思想介绍

    本文主要介绍神经网络理论研究的物理学思想 神经网络在当今人工智能研究和应用中发挥着不可替代的作用。它是人类在理解自我(大脑)的过程中产生的副产品,以此副产品,人类希望建造一个机器智能来实现机器文明
    的头像 发表于 01-16 11:16 1319次阅读
    神经网络理论研究的<b class='flag-5'>物理学</b>思想介绍

    NVIDIA发布Cosmos™平台,助力物理AI系统发展

    NVIDIA近日宣布推出全新的NVIDIA Cosmos™平台,该平台专为自动驾驶汽车(AV)和机器人等物理AI系统而设计,旨在推动这些领域的快速发展。 Cosmos平台融合了先进的生成式世界
    的头像 发表于 01-08 15:36 896次阅读

    什么是表面光学技术?

    光学表面 目前,表面光学技术备受关注。简单来说,表面光
    的头像 发表于 12-18 06:25 1035次阅读

    空间光调制器自适应激光光束整形

    调制器(SLM)在控制和调制激光方面具有无限的可能: 自适应光学分辨显微镜 光镊 激光材料处理 量子光学 SLM光束整形: 将一个高斯
    发表于 12-12 10:33