0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

揭秘AI推理芯片的未来

颖脉Imgtec 2024-01-26 08:29 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

来源:内容由半导体行业观察(ID:icbank)编译自design-reuse,谢谢。


人工智能行业包含一个受技术进步、社会需求和监管考虑影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步加速了人工智能的发展和采用。社会对医疗保健、金融和制造等各个领域的自动化、个性化和效率的需求进一步推动了人工智能技术的融合。此外,不断变化的监管环境强调了人工智能部署道德、数据隐私和算法透明度的重要性,指导人工智能系统负责任的开发和应用。

人工智能行业将训练和推理过程结合起来,以有效地创建和部署人工智能解决方案。人工智能推理和人工智能训练都是整个人工智能生命周期不可或缺的组成部分,其重要性取决于具体的环境和应用。虽然人工智能训练对于通过学习模式和从数据中提取见解来开发和微调模型至关重要,但人工智能推理在利用这些经过训练的模型进行实时预测和决策方面发挥着至关重要的作用。人工智能推理的重要性日益增长(目前超过 80% 的人工智能任务)在于其在推动数据驱动的决策、个性化用户体验和跨行业运营效率方面发挥着关键作用。

高效的人工智能推理实施面临着数据可用性、计算资源、算法复杂性、可解释性和监管合规性方面的挑战。适应动态环境和管理可扩展性,同时控制成本会带来额外的障碍。克服这些挑战需要全面的策略,包括强大的数据管理实践、硬件功能的进步和算法的改进。开发可解释的人工智能模型并遵守道德和监管准则对于建立用户信任和确保合规性至关重要。此外,通过高效的运营实践和技术创新来平衡资源分配和成本管理对于在不同行业领域实现可持续和有效的人工智能推理解决方案至关重要。通过自动化任务、增强预测性维护和实现高级分析,人工智能推理可以优化流程、减少错误并改善资源分配。人工智能推理为自然语言处理提供动力,改善人与机器之间的沟通和理解。

它对制造业的影响包括预测性维护、质量控制和供应链管理、提高效率、减少浪费和提高产品质量,凸显了其对行业运营的变革性影响。人工智能推理面临高能耗、密集计算需求和实时处理限制等挑战,导致运营成本增加和环境影响。AI总功耗超过60%来自推理,推理需求的增加导致数据中心容量在两年内增长了2.5倍(GAFA数据)。对于服务器来说,密集计算过程中产生的热量需要复杂的冷却系统,这进一步增加了人工智能流程的整体能耗。此外,平衡高效实时处理与低延迟要求(服务器、高级驾驶辅助系统 (ADAS) 或制造应用程序的强制要求)构成了重大挑战,需要先进的硬件设计和优化的计算策略。在不影响准确性的情况下,优先考虑可再生能源和环保举措的节能解决方案对于减轻人工智能推理过程对环境的影响至关重要。

传统的人工智能推理硬件设计,使用CPUGPU,由于人工智能算法的复杂性和特殊性,在实现能源效率方面面临限制,导致高功耗(服务器每个多核单元数百瓦)。处理单元和内存之间低效的数据移动进一步影响能源效率和吞吐量;例如,访问外部 DRAM 比访问本地寄存器消耗的能量多 200 倍。最后,由于更高的计算需求,到 2025 年,使用 CPU 和 GPU 的下一代服务器的功耗可能高达 1,000 W。在资源有限的电池供电设备上部署 AI 推理更具挑战性,因为最高效的设备基于 CPU 和 GPU 的设计功耗为 10 mW 到几瓦,受到强大的吞吐量限制,限制了 AI 复杂性和最终用户体验。在能源效率与性能和精度要求之间取得平衡需要在设计过程中进行仔细权衡,从而需要全面的优化策略。对复杂人工智能工作负载的硬件支持不足可能会影响能源效率和性能。可持续发展目标、降低成本目标和新用途推动了行业对节能人工智能推理解决方案不断增长的需求。企业寻求可扩展的高性能解决方案来管理复杂的人工智能工作负载,而不会产生过多的能源成本。

另一方面,节能的人工智能推理将使移动和资源受限的设备能够执行复杂的任务,而不会快速耗尽电池,同时减少对基于云的处理的依赖,最大限度地减少数据传输和延迟问题。它将通过实时语言翻译、个性化推荐和准确图像识别等高级功能的新用途来增强用户体验,从而提高参与度和满意度。为了克服 CPU 和 GPU 的限制,创新的硬件加速器专为 AI 推理工作负载而设计,可实现高效和优化的处理,同时最大限度地减少能耗。此类加速器通过人工智能应用程序中使用的专用运算符(池化、激活函数、标准化等)实现优化的数据流。数据流引擎是矩阵乘法单元,是一个大型处理元件阵列,能够有效处理大型矩阵向量乘法、卷积和许多更复杂的运算,因为大多数神经网络都基于矩阵乘法运算。为了进一步优化能源效率,人工智能加速器采用了新技术,例如近内存计算。近内存计算将处理元件集成在内存子系统内,从而能够在内存附近实现更快的数据处理,从而减少与数据传输相关的能耗。最近,使用“非标准”技术的新方法,例如内存计算或尖峰神经网络(SNN),是实现高能效人工智能推理的最积极的解决方案。内存计算直接在内存内进行电路级计算,无需数据传输并提高处理速度。

处理可以以模拟或数字方式执行,并实现不同的存储技术,例如 SRAM、闪存或新的 NVM(RRAM、MRAM、PCRAM、FeFET 等)。这种方法对于涉及大型数据集的复杂人工智能任务特别有益。SNN 还代表了一种创新的人工智能推理方法:它们通常由通过尖峰进行通信的互连节点组成,能够模拟复杂的时间过程和基于事件的计算,这对于处理时间敏感数据或模拟大脑等任务非常有用。利用近内存/内存计算或 SNN 的 AI 加速器为 AI 行业带来重大影响,包括提高能源效率、提高处理速度和先进的模式识别功能。这些加速器推动硬件设计的优化,从而创建针对特定人工智能工作负载量身定制的专用架构。此外,它们还促进了边缘计算的进步,促进直接在边缘设备上进行高效的人工智能处理并减少延迟。这些技术的变革潜力凸显了它们在医疗保健和制造、汽车和消费电子产品等不同行业变革中的关键作用。高能效人工智能推理在医疗保健和汽车领域的集成产生了变革性的影响。在医疗保健领域,它通过快速数据分析促进更快的诊断和个性化患者护理,从而改善治疗结果和量身定制的医疗干预措施。此外,它还可以开发远程患者监测系统,确保对慢性病患者进行持续的健康跟踪和主动干预。

此外,在药物发现领域,节能的人工智能推理可以加快潜在候选药物的识别,加速药物研发进程,促进医疗和疗法的创新。在汽车行业,节能的人工智能推理在提升安全功能和自动驾驶能力方面发挥着至关重要的作用。它为车辆提供 ADAS 和实时碰撞检测功能,从而增强整体道路安全。此外,它还有助于自动驾驶技术的发展,使车辆能够根据实时数据分析做出明智的决策,从而改进导航系统和自动驾驶功能。此外,实施基于节能人工智能推理的预测性维护解决方案可以及早发现潜在的车辆问题,优化性能,减少停机时间并延长车辆使用寿命。

促进可持续运营、优化资源利用率和延长设备电池寿命的需求推动了行业对节能人工智能推理解决方案的关键需求。这些解决方案在促进环保实践、降低运营成本和增强竞争优势方面发挥着至关重要的作用。通过促进边缘计算应用并最大限度地减少能源消耗,节能的人工智能推理解决方案使企业能够提高盈利能力、简化流程并确保移动和物联网设备的功能不间断。满足这一需求需要开发节能算法和优化的硬件架构,这在很大程度上基于智能近内存/内存计算技术。许多新玩家带着创新的计算解决方案进入市场,并承诺在从传感器到数据中心的任何地方运行人工智能,并雄心勃勃地提供全新的用户体验。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 芯片
    +关注

    关注

    462

    文章

    53608

    浏览量

    459998
  • AI
    AI
    +关注

    关注

    90

    文章

    38346

    浏览量

    297474
  • 人工智能
    +关注

    关注

    1813

    文章

    49793

    浏览量

    262019
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    AI推理的存储,看好SRAM?

    看到了其前景并提前布局。AI推理也使得存储HBM不再是唯一热门,更多存储芯片AI推理芯片结合,
    的头像 发表于 03-03 08:51 2457次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>推理</b>的存储,看好SRAM?

    AI推理需求爆发!高通首秀重磅产品,国产GPU的自主牌怎么打?

    推出,直接推动AI推理市场的上扬,未来3-5年都是AI推理领域的规模应用阶段。不管是行业应用,还是算力相关的
    的头像 发表于 10-30 00:46 1.3w次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>推理</b>需求爆发!高通首秀重磅产品,国产GPU的自主牌怎么打?

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片到AGI芯片

    、分布式群体智能 1)物联网AGI系统 优势: 组成部分: 2)分布式AI训练 7、发展重点:基于强化学习的后训练与推理 8、超越大模型:神经符号计算 三、AGI芯片的实现 1、技术需求 AI
    发表于 09-18 15:31

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI的科学应用

    主要步骤: ①溯因②假说③实验 1、科学推理的类型 ①演绎②归纳 2、自动化科学发现框架 AI-笛卡儿-----自动化科学发现框架,利用数据和知识来生成和评估候选的科学假说。 4项规则:三、直觉
    发表于 09-17 11:45

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI未来:提升算力还是智力

    本章节作者分析了下AI未来在哪里,就目前而言有来那个两种思想:①继续增加大模型②将大模型改为小模型,并将之优化使之与大模型性能不不相上下。 一、大模型是一条不可持续发展的道路 大模型的不可
    发表于 09-14 14:04

    【「AI芯片:科技探索与AGI愿景」阅读体验】+AI芯片的需求和挑战

    的工作吗? 从书中也了解到了AI芯片都有哪些?像CPU、GPU、FPGA、ASIC都是AI芯片。 其他的还是知道的,FPGA属于AI
    发表于 09-12 16:07

    AI推理芯片赛道猛将,200亿市值AI芯片企业赴港IPO

    7月30日,AI芯片龙头企业云天励飞正式向港交所递交招股说明书。   云天励飞成立于2014年8月,于2023年4月在上交所科创板挂牌,截至8月1日的市值为216亿元。专注于AI推理
    的头像 发表于 08-04 09:22 4146次阅读
    <b class='flag-5'>AI</b><b class='flag-5'>推理</b><b class='flag-5'>芯片</b>赛道猛将,200亿市值<b class='flag-5'>AI</b><b class='flag-5'>芯片</b>企业赴港IPO

    AI未来,属于那些既能写代码,又能焊电路的“双栖人才”

    的信号:AI真正的未来,不只属于“算法天才”,更属于那些既能写代码,又能焊电路的“双栖工程师”。无论是在AI芯片、智能终端、机器人、边缘计算还是大模型下沉的讨论中,我们不断听到同一个问
    发表于 07-30 16:15

    【书籍评测活动NO.64】AI芯片,从过去走向未来:《AI芯片:科技探索与AGI愿景》

    问题请咨询工作人员(微信:elecfans_666)。 AI芯片,从过去走向未来 四年前,市面上仅有的一本AI芯片全书在世界范围内掀起一阵
    发表于 07-28 13:54

    信而泰×DeepSeek:AI推理引擎驱动网络智能诊断迈向 “自愈”时代

    DeepSeek-R1:强大的AI推理引擎底座DeepSeek是由杭州深度求索人工智能基础技术研究有限公司开发的新一代AI大模型。其核心优势在于强大的推理引擎能力,融合了自然语言处理(
    发表于 07-16 15:29

    Nordic收购 Neuton.AI 关于产品技术的分析

    与 Nordic 的 nRF54 系列超低功耗无线 SoC 结合,使得即使是资源极为有限的设备也能高效运行边缘 AI。Nordic 目前正在将 Neuton 深度集成到自身开发生态中,未来会提供更多工具、固件
    发表于 06-28 14:18

    谷歌新一代 TPU 芯片 Ironwood:助力大规模思考与推理AI 模型新引擎​

    Cloud 客户开放,将提供 256 芯片集群以及 9,216 芯片集群两种配置选项。   在核心亮点层面,Ironwood 堪称谷歌首款专门为 AI 推理精心设计的 TPU
    的头像 发表于 04-12 00:57 3289次阅读

    FPGA+AI王炸组合如何重塑未来世界:看看DeepSeek东方神秘力量如何预测......

    、关于FPGA的未来——“无限可能的未来世界” AI时代的FPGA未来前景如何?FPGA+AI如何重塑
    发表于 03-03 11:21

    使用NVIDIA推理平台提高AI推理性能

    NVIDIA推理平台提高了 AI 推理性能,为零售、电信等行业节省了数百万美元。
    的头像 发表于 02-08 09:59 1385次阅读
    使用NVIDIA<b class='flag-5'>推理</b>平台提高<b class='flag-5'>AI</b><b class='flag-5'>推理</b>性能

    生成式AI推理技术、市场与未来

    (reasoning)能力,这一转变将极大推动上层应用的发展。 红杉资本近期指出,在可预见的未来,逻辑推理推理时计算将是一个重要主题,并开启生成式AI的下一阶段。新一轮竞赛已然开始。
    的头像 发表于 01-20 11:16 1284次阅读
    生成式<b class='flag-5'>AI</b><b class='flag-5'>推理</b>技术、市场与<b class='flag-5'>未来</b>