0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

一文了解各种常用的微波传输线【综合版】

云脑智库 来源:云脑智库 2023-12-07 10:36 次阅读

8d235298-94a8-11ee-939d-92fbcf53809c.png

摘要:

定向传输微波信号和微波能量的传输线可称之为微波传输线,常用的TEM模传输线有同轴线,微带线,带状线和共面波导,TE模和TM模传输线有矩形波导,圆波导,椭圆波导和瘠波导等。本次推文就简单介绍几种典型微波传输线的理论和仿真分析。

0 1 同轴线和带状线

传输TEM模的传输线中,最常见的自然是同轴线和微带线了。

同轴线(coaxial line)是一种宽带传输线,其TEM主模的截止波长无穷大,但是其第一高次模为模,单模传输时要满足。其中和分别为同轴线的内外半径尺寸。

8d2efdd2-94a8-11ee-939d-92fbcf53809c.jpg

利用CST的阻抗计算小工具,我们可以计算下同轴线的参数

8d4b76b0-94a8-11ee-939d-92fbcf53809c.png

和理论公式一样,空气填充,内外直径分别为0.8mm和1.84mm的同轴线,其特性阻抗为。该尺寸下的同轴线基本为50欧姆特性阻抗。

8d5f6710-94a8-11ee-939d-92fbcf53809c.png

点击Build 3D,设置好求解频率和边界条件后,设置波端口Nums of modes为2便于查看高次模模。在时域求解器中激励Port1端口即可,并勾选Calculate port mode only进行快速计算。

8d750ed0-94a8-11ee-939d-92fbcf53809c.png

从下图仿真结果可以看出,高次模模的截止频率为73.56GHz,除此之外,两种模式的电场矢量分布差异也是一目了然。

8d8066b8-94a8-11ee-939d-92fbcf53809c.png

8d96a3d8-94a8-11ee-939d-92fbcf53809c.png

同轴线两种模式的截面电场分布

左图TEM模式,右图TE11模式

带状线(stripline)由两块相距为的地板,与中间宽度为厚度为的矩形截面导体构成,两块地板中间填充均匀的介质,如下图所示:

8dce4356-94a8-11ee-939d-92fbcf53809c.png

与同轴线类似会出现和模式一样,通常选择带状线尺寸:

地板横向宽度为带状线宽度的5~6倍,以避免出现高次模。

同理,带状线的计算和建模仿真也可以直接调用CST的阻抗计算小工具。

8dd64c18-94a8-11ee-939d-92fbcf53809c.png

接下面波端口的设计就有讲究了,按下图进行操作,即可打开Calculate port extension coefficient

8de187fe-94a8-11ee-939d-92fbcf53809c.png

不过懒人建模仿真可以先Pick带状线的截面,然后再打开此界面,点击Construct port from picked face,即可完成波端口激励的设置,另一个波端口亦是如此。同样可以把波端口的Nums of modes设置为2,便于查看第一高次模。

8df3757c-94a8-11ee-939d-92fbcf53809c.png

仿真完毕后,可以在1D Results->Port Information->Line Impedance下查看该带状线的端口阻抗值基本为50欧姆。

8e1229f4-94a8-11ee-939d-92fbcf53809c.png

2D/3D Results下的Port Modes可以看到激励模式的电场矢量:

8e27513a-94a8-11ee-939d-92fbcf53809c.png

8e42271c-94a8-11ee-939d-92fbcf53809c.png

带状线两种模式的截面电场分布

0 2 微带线

微带线在媺波集成电路中应用的比较广泛,其结构如下图所示:

8e6ed4f6-94a8-11ee-939d-92fbcf53809c.png

相较于带状线而言,微带线的上下半平面就没那么对称了。实际上微带线的严格场解是由TE-TM波混合组成的,然而工程实际应用中考虑到介质基板厚度,因此其场是准TEM模,可以通过微波工程一书中的理论计算公式进行微带线的有效介电常数特性阻抗的近似计算,这些结果是对严格的准静态解的曲线做近似拟合,这里就不做过多赘述。 依葫芦画瓢一样计算并构建好微带线的模型,适当调整基板的横向宽度和基板长度。

8e846064-94a8-11ee-939d-92fbcf53809c.png

8e99da84-94a8-11ee-939d-92fbcf53809c.png

2D/3D Results下的Port Modes可以看到激励模式的电场矢量:

8eadccba-94a8-11ee-939d-92fbcf53809c.png

8ec603d4-94a8-11ee-939d-92fbcf53809c.png

微带线两种模式的截面电场分布

0.762mm厚度基板

可以看到10.69GHz即出现了第一高次模式。

为了拓宽准TEM模式的单模工作频带范围,需要将介质基板厚度降低。如下图所示,采用0.254mm厚度的基板,第一高次模式截止频率提高到了24.54GHz。

8eecf5c0-94a8-11ee-939d-92fbcf53809c.png

8f18aa30-94a8-11ee-939d-92fbcf53809c.png

8f2d0c46-94a8-11ee-939d-92fbcf53809c.png

微带线两种模式的截面电场分布

0.254mm厚度基板

0 3 矩形波导和基片集成波导

在平面口径天线简谈一文中,已对矩形波导的进行了简单的理论分析和仿真。

理论计算矩形波导参数的Matlab代码搬运如下:

%Matlab计算矩形波导参数
prompt={'波导填充介质的介电常数:','波导宽边尺寸(mm):','波导窄边尺寸(mm):',"需计算的工作频率(GHz):"};
dlgtitle='Input';
dims=[135];
definput={'1','23.53','11.77','10'};
answer=inputdlg(prompt,dlgtitle,dims,definput);
%矩形波导TE10模式截止频率计算
e0=1/36/pi*1e-9;u0=4*pi*1e-7;
Er=str2double(answer{1});a=str2double(answer{2})*1e-3;
b=str2double(answer{3})*1e-3;c=3*1e8;fre=str2double(answer{4})*1e9;
m=1;n=0;
fc=c/2/sqrt(Er)*sqrt((m/a)^2+(n/b)^2);
beta_g=sqrt((2*pi*fre)^2*Er*e0*u0-(pi/a)^2);

msgbox({strcat('TE',num2str(m),num2str(n),'模式的截止频率为:',num2str(fc/1e9),'GHz'),...
strcat(num2str(fre/1e9),'GHz的波导相移常数为:',num2str(beta_g),'rad/m'),...
strcat(num2str(fre/1e9),'GHz的波导波长为:',num2str(2*pi/beta_g*1e3),'mm')});

对于金属波导而言,由于其难以与平面结构和有源器件集成,因此一种基于介质基板的波导结构被提了出来——基片集成波导。

基片集成波导Substrate integrated waveguide(SIW)是一种新的微波传输线形式,其利用金属通孔在介质基片上实现波导的场传播模式。

对于SIW结构的详细理论可以参照学术期刊论文的相关资源,下图就节选自2005年的IEEE MTT上的一篇期刊论文Guided-wave and leakage characteristics of substrate integrated waveguide[1]。

8f47cea0-94a8-11ee-939d-92fbcf53809c.png

该结构采用PCB实现两排金属化通孔,将电磁波限制在两排金属化通孔和上下金属边界形成的矩形腔内。论文给出了一个比较精准的等效的矩形波导宽度的公式:

8f5463cc-94a8-11ee-939d-92fbcf53809c.png

对于基片集成波导的理论分析与详细设计,可参考今天推送的第3条推文(附HFSS仿真SIW的实例)。

基片集成波导的理论分析与详细设计

8f637010-94a8-11ee-939d-92fbcf53809c.jpg

8f7eb244-94a8-11ee-939d-92fbcf53809c.jpg

8f9532a8-94a8-11ee-939d-92fbcf53809c.jpg

对于SIW结构的建模,个人觉得CST相较于HFSS更加好用一点。在巧用HFSS脚本录制功能一文中,文末尝试通过录制脚本的方式修改DuplicateAlongLine的Total Number修改为变量,但是在Design Properties中修改变量num的值,其平移复制的个数并不会产生变化。

8fb9df18-94a8-11ee-939d-92fbcf53809c.png

这种建模没法达到SIW的金属化通孔间距固定的情况下,其通孔个数随着基板长度变化而自适应的需求,然而CST可以。

在CST的Translate中,平移复制的距离和个数都可以设置成变量。

8fd01422-94a8-11ee-939d-92fbcf53809c.png

于是就有了下面视频中,金属化通孔随着基板长度变化而自适应补上的丝滑操作。

0 4 圆波导与矩圆转换变换器

下图是微波工程一书中的一个例题:

8fda49c4-94a8-11ee-939d-92fbcf53809c.png

先按下图所示,建立起聚四氟乙烯填充的圆波导模型。

8fe8181a-94a8-11ee-939d-92fbcf53809c.png

接着设置求解频率范围为10GHz~20GHz,波端口激励模式设置为3个,便于查看高次模式,在时域求解器里勾选Calculate port modesonly进行激励端口模式的快速计算。 查看仿真结果可知,前两个高次模均为模式,由于圆波导具有轴对称性,就产生了极化简并现象。

9003f904-94a8-11ee-939d-92fbcf53809c.png

901946f6-94a8-11ee-939d-92fbcf53809c.png

下图所示为高次模式:

903baa02-94a8-11ee-939d-92fbcf53809c.png

90521454-94a8-11ee-939d-92fbcf53809c.png

仿真结果的截止频率如下:

与理论公式计算值基本一致:

9086c262-94a8-11ee-939d-92fbcf53809c.png

对于矩形波导和圆波导的转换,用CST的Loft操作可以轻松搞定,需要注意圆波导端口激励模式的极化简并问题。

CST矩圆转换建模

908dc882-94a8-11ee-939d-92fbcf53809c.png

90a8e5ea-94a8-11ee-939d-92fbcf53809c.png

90b9dac6-94a8-11ee-939d-92fbcf53809c.png

90d351fe-94a8-11ee-939d-92fbcf53809c.png

可以看出20GHz~30GHz,矩圆转换的端口S11均小于-20dB,下图为矩形波导转换为圆波导的电场截面图示:

90e72e7c-94a8-11ee-939d-92fbcf53809c.png

90fb8dcc-94a8-11ee-939d-92fbcf53809c.png

电场contour图示

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 微波
    +关注

    关注

    16

    文章

    1028

    浏览量

    83074
  • 传输线
    +关注

    关注

    0

    文章

    354

    浏览量

    23766
  • TEM
    TEM
    +关注

    关注

    0

    文章

    72

    浏览量

    10307
收藏 人收藏

    评论

    相关推荐

    总结一下微波传输线理论相关的知识点

    微波设计最重要的就是各种各样微波传输线的设计,我们在设计中经常用到的微博传输线包括;同轴线,带状
    的头像 发表于 10-25 09:19 2978次阅读

    介绍几种典型微波传输线和仿真分析

    定向传输微波信号和微波能量的传输线可称之为微波传输线常用
    的头像 发表于 12-07 10:36 815次阅读
    介绍几种典型<b class='flag-5'>微波</b><b class='flag-5'>传输线</b>和仿真分析

    #硬声创作季 微波技术:第3-3讲几种常用传输线比较

    传输线微波技术
    Mr_haohao
    发布于 :2022年10月29日 12:37:42

    传输线的特性阻抗分析

    传输线的特性阻抗分析传输线的基本特性是特性阻抗和信号的传输延迟,在这里,我们主要讨论特性阻抗。传输线个分布参数系统,它的每
    发表于 09-28 14:48

    实现阻抗控制的传输线配置方式

    实现阻抗控制的传输线配置方式控制阻抗 PCB 通常使用微波传输带或带状线传输线路,以单端(未平衡)或差分(已平衡)配置的方式生产。单端配置以
    发表于 09-28 16:16

    微波传输线理论 ppt 下载

    微波传输线理论 微波传输的最明显特征是别树帜的微波
    发表于 11-02 09:22

    广义传输线理论

    广义传输线理论 从本门课程开始,我们就强调从最宏观的角度:微波工程有两种方法——场论的方法和网络的方法。首先,我们要把传输线理论推广到波导,由微波
    发表于 11-02 10:26

    射频传输线设计

    微波频率4GHz,但是输出引脚很窄(只有计算的微带线线宽的四分之左右),如何设计传输线比较好?如下图所示两种方法(黑色的表示电容焊盘),
    发表于 01-02 16:35

    微波传输线

    ,某些器件(如旋转接头)需要有圆截面。与矩形波导相比,脊形波导可宽频带运作。下图e所示的鳍形线常用于毫米波段。实际上,它像是包封在矩形波导中的开槽线。用于RF和
    发表于 12-21 17:21

    PCB传输线原理

      在电路设计的各种场合里都能接触到传输线术语。显然,传输线是信号完整性分析当中重点考察的元件之,很多分析都建立在此基础上。本文将讨论
    发表于 11-23 15:46

    从阻抗匹配的角度来解析射频微波传输线的设计技术

    传输线设计是高频有线网络、射频微波工程、雷射光纤通信等光电工程的基础,为了能让能量可以在通信网路中无损耗地传输,良好的传输线设计是重要关键。 无线通信加上视频技术将成为未来的明星产业
    发表于 06-20 08:17

    读懂传输线是什么

    什么是传输线?PCB上常见的传输线是什么?
    发表于 10-14 06:53

    标准传输线的应用领域及范围

    •表面贴装易于集成 应用范围: 广泛应用于各类微波系统,空间技术中。标准 50/100欧姆传输线 单线金属导线 带两排调节垫的单线金属导线 带四排调节垫的单线金属导线
    发表于 06-13 13:57

    常用微波传输线及特性介绍

    1)TEM传输线-非色散传输线 常用的TEM传输线有平行双导线、同轴线、带状线、微带线、共面波导等(图1)。
    的头像 发表于 04-15 17:08 1.8w次阅读

    微波传输线简介

    微波传输线微波工程的基础,今天我们再来详细学习一下微波传输线的基础知识。目前常用
    的头像 发表于 05-22 10:37 1048次阅读
    <b class='flag-5'>微波</b><b class='flag-5'>传输线</b>简介