0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

金融行业迎来大模型时代,存算基建成决胜关键

浪潮存储 来源:未知 2023-09-25 15:40 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

去年年底,ChatGPT诞生,凭借强大、精准的自然语言理解和生成能力,令全球用户为之一震。

自此,各行各业纷纷投身大模型研发竞赛,掀起新一轮技术创新热潮。金融行业更是如此。如何构筑面向大模型时代的新型算力和存力基础设施,实现大模型能力向金融领域的迁移,成为金融机构热议的话题。

金融大模型 在哪些场景有用武之地?

作为AI新基建,大模型在金融行业有着广泛的应用场景。

前台,智能客服,是AI在金融领域最常见的应用方向之一。还记得钢铁侠电影里的AI管家贾维斯(Jarvis)么?金融大模型将大幅提升客户经理的专业水平和服务能力,大幅降低客户经理的运营成本,让每个人都拥有类似Jarvis的24小时在线的专业客户经理。

中台,AI大模型有机会改变金融机构内知识获取、内容创作、会议与沟通、代码开发与测试的方式,提升内部办公效率,甚至引发研发测试模式变革,全方位提升金融机构内部运营效率。

后台,大模型将成为智能科技底座的标配,大幅降低智能技术应用的门槛,只需少量标注数据就可以让智能技术覆盖广泛的场景。

总之,AI大模型在内容生成与创作、信息摘要与总结、知识理解与问答、自然交互与对话等方面具备非常出色的能力,在金融行业有广泛的应用前景。

万卡规模、万亿参数,大模型有“高门槛”

大模型的快速迭代,需要高效算力和存储基础设施的加持。

一方面,算力是大模型的引擎。语言类、视觉类模型容量和相应的算力需求都在快速扩大,金融大模型发展的背后是庞大的算力支撑。如果用“算力当量”(PetaFlops/s-day,PD),即每秒千万亿次的计算机完整运行一天消耗的算力总量,来对人工智能任务所需算力总量进行度量,大模型训练需要几百甚至几千PD的算力支持,也意味着需要巨大的算力成本。

wKgZomUmxCqAEx0tAANBrnu-lPc208.png

算力是大模型发展核心要素

例如,OpenAI 在2020 年推出的 GPT-3,对算力的需求至少要上万颗A100 GPU,一次模型训练总算力消耗约3,640PD的算力。又如,浪潮信息推出的“源”中文语言大模型有近2500亿个模型参数,算力消耗达4000PD。再如,当前GPT-4和PaLM-2的算力当量已经达到GPT-3的数十倍。这还不算,谷歌正在开发的下一代多模态大模型Gemini,其训练量碾压GPT-4,达到后者5倍。

快速攀升的AI算力消耗,有限的IT预算,让大多数金融机构陷入两难境地:想做大模型,但资源匮乏、成本压力大、人才稀缺;不做大模型,又只能坐看机会错失。

对此,分而治之或许是一种可行的办法。所谓分,就是把大模型分为通用大模型和行业大模型。金融机构不用自己打造通用大模型,而是基于第三方的通用大模型,在此基础上专注打造行业大模型。根据信通院发布的《行业大模型标准体系及能力架构研究报告》,通用大模型缺乏专业知识和行业数据,而且构建和训练成本很高,难以实现商用。为更好解决特定行业为题,行业大模型应运而生。行业大模型可以满足特定场景需求,更好地为行业提供优质的服务,促进行业智能化转型升级。

浪潮信息AI服务器产品专家郭磊表示,“金融机构可以集中资源在行业大模型上,不是‘在一千米的地上挖一米深的沟’,而是‘在一米的地方挖一千米深’”。

wKgZomUmxCqAb9PLAAJkIL2WnPU219.png

大模型训练四个阶段

具体来看,大模型训练的第一阶段是无监督预训练阶段,训练周期往往持续数十天到数月,需要数千张GPU卡同时计算,算力消耗巨大,训练时间非常长,训练出来的模型是基础语言模型。金融机构可以通过使用开源平台或者第三方合作(如浪潮信息的“源”大模型),获得基础语言能力。第二到第四阶段是有监督精调阶段、奖励模型训练和强化学习,这3个阶段需要数十张乃至上百张GPU卡同时计算,算力消耗的规模和训练时长相比第一阶段都有明显下降,所以金融机构可以在这三个阶段进行训练,打造有金融行业优势的大模型。

另一方面,大模型光有算力远远不够,还取决于数据规模和数据质量。

大模型的优势在于海量信息的搜集、提取和分析能力,这是人类难以企及的。

wKgZomUmxCqASibZAADjpER_fIc692.jpg

大模型参数规模的进化

近几年,通用大模型的参数量快速增长。2016年OpenAI发布Gym强化学习平台,2018年GPT-1问世,模型参数为1.17亿,经过不断迭代,GPT-4参数规模达到1.76万亿。Google从2017年发布Transformer(6500万参数)架构以来,陆续发布BERT(2018年,3亿参数)、T5(2019年,110亿参数),参数规模逐步提高。近期,Google发布通才模型PaLM-E,这是全球最大的视觉语言模型,包含5620亿参数。

在垂直行业,金融大模型的数据集在通用大模型基础上还需包含诸如金融研报、股票、基金、银行、保险等方向的专业知识,通过在训练过程中加入大量金融对话数据并针对金融领域进行特定的预训练调优,提升其在金融垂直领域的表现。

同时,多模态、跨模态成为常态,金融大模型的数据类型变得更加丰富。其中无监督数据,即原始数据,数据格式可以是网页、文本或语音数据;有监督数据,即经过标注的数据,格式可以为json或Query。此外,为了给投资者提供实时市场舆情和风险预测等服务,金融机构还要高效处理金融行业新闻、股票交易,乃至社交评论等金融数据。这些巨量、多模态、实时的金融数据新需求、新特征,传统集中式存储难以应对,需要弹性、灵活的新型分布式存储架构来支撑。

由此可见,随着金融大模型的演进,整个数据中心的架构都会发生改变,从AI服务器、到存储、再到网络的全栈方案都需要适应大模型时代的需求。

基础设施 如何“存得下、算得快、传得稳”

只有数据“存得下”、算力“算得快”、网络“传得稳”,数字基础设施才能充分发挥数据要素价值,推动大模型应用落地,带动新业态繁荣发展。

对此,浪潮信息基于智慧计算战略,从算力、算法、数据、互联四方面推进产品创新,为大模型打造强大底座。

算力方面,浪潮信息通过千亿参数规模的大模型创新实践,已在算力集群构建、算力调度部署、算法模型开发等方面,构建起全栈领先的大模型算力系统解决方案,助力大模型训练开发。其中最新一代融合架构的 AI 训练服务器 NF5688G7 采用 Hopper 架构的 GPU, 较上代平台大模型实测性能提升近 7 倍,同时支持最新的液冷解决方案,可实现更低的集群能耗比与运行成本,PUE 小于 1.15, 以一个 4000 卡的智算中心为例,每年可节电 620 万度、降碳 1700 吨。

存储方面,浪潮信息生成式AI存储解决方案用一套AS13000融合存储支撑生成式AI的全阶段应用,提供全闪、混闪、带库、光盘四种介质,支持文件、对象、大数据、视频、块多种协议。结合AIGC数据处理的五个阶段:数据采集、准备、训练、推理和归档,浪潮信息由同一套存储提供端到端的数据流支持,满足文本、音频、图像、视频、代码等多模态数据的存储和处理需求。

浪潮信息存储产品

在集群高速互联层面,浪潮信息基于原生 RDMA 实现整个集群的全线速组网,并对网络拓扑进行优化,可以有效消除混合计算的计算瓶颈,确保集群在大模型训练时始终处于最佳状态。

当前,国有大行、股份制银行以及部分城商行,均已经开展或计划开展金融大模型研发,AI算力和数据基建将迎来高速发展。根据IDC预测,未来5年中国智能算力规模的年复合增长率将达52%,分布式存储增速将达到中国市场增速的2倍。大模型时代,金融机构需要以AI的场景、架构为抓手,结合各行的数据特点,打造新一代智算基础设施。


声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 存储
    +关注

    关注

    13

    文章

    4701

    浏览量

    89582
  • 浪潮
    +关注

    关注

    1

    文章

    476

    浏览量

    25310

原文标题:金融行业迎来大模型时代,存算基建成决胜关键

文章出处:【微信号:inspurstorage,微信公众号:浪潮存储】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    曙光存储推出面向金融的可信AI存储

    近日,曙光存储推出面向金融的可信AI存储,助力金融行业高效、安全、稳定地使用关键业务敏感数据。该方案基于全球领先的集中式全闪存储FlashNexus,构建“真
    的头像 发表于 10-23 09:24 501次阅读

    IP广域网助力力互联网建设进入快车道

    人工智能大模型等应用爆发式发展带动了智能力需求激增,全国各地纷纷建设大量智中心。在迎来新机遇的同时,
    的头像 发表于 09-25 10:40 500次阅读

    后摩尔定律时代,3D-CIM+RISC-V打造国产一体新范式

    力、能效与带宽瓶颈成为行业前行的关键阻碍,而美西方的技术禁运更让中国芯片产业面临严峻挑战。   在这一大背景下,一体成为国产
    发表于 09-17 09:31 5339次阅读
    后摩尔定律<b class='flag-5'>时代</b>,3D-CIM+RISC-V打造国产<b class='flag-5'>存</b><b class='flag-5'>算</b>一体新范式

    科技上线赤兔推理引擎服务,创新解锁FP8大模型

    模型轻量化部署方案。用户通过远程力平台预置的模型镜像与AI工具,仅需50%的GPU力即可解锁大模型推理、企业知识库搭建、智能体开发,加
    的头像 发表于 07-30 21:44 732次阅读

    蚂蚁数科正式发布金融推理大模型

    7月26日,以“智能时代,同球共济”为主题的2025世界人工智能大会在上海开幕;亮点很多。我们看到在世界人工智能大会论坛上,蚂蚁数科正式发布了金融推理大模型Agentar-Fin-R1,金融
    的头像 发表于 07-28 16:36 536次阅读

    平衡”有多重要?

    。而决定这种配合效率的关键指标,正是我们今天要聊的“比”。什么是比?
    的头像 发表于 07-11 14:06 485次阅读
    “<b class='flag-5'>算</b><b class='flag-5'>存</b>平衡”有多重要?

    华为AI大模型助力金融行业智能化转型

    第十三届华为全球智慧金融峰会HiFS2025在东莞三丫坡圆满落幕。会议期间,中国邮政储蓄银行(简称“邮储银行”)运营数据中心大模型工作组组长杜金鑫发表题为“AI大模型赋能创新,迈向智能运维新纪元”的主题演讲,分享邮储银行携手华为
    的头像 发表于 06-14 11:40 1011次阅读

    智能基建:RAKsmart如何赋能下一代AI开发工具

    当今,AI模型的复杂化与规模化对力提出了前所未有的要求。然而,传统的力基础设施在灵活性、成本效率和可扩展性上逐渐显露出瓶颈。而RAKsmart凭借其全球化的智能
    的头像 发表于 05-07 09:40 365次阅读

    苹芯科技 N300 一体 NPU,开启端侧 AI 新征程

    随着端侧人工智能技术的爆发式增长,智能设备对本地力与能效的需求日益提高。而传统冯·诺依曼架构在数据处理效率上存在瓶颈,“内存墙”问题成为制约端侧AI性能突破的关键掣肘。在这一背景下,
    的头像 发表于 05-06 17:01 867次阅读
    苹芯科技 N300 <b class='flag-5'>存</b><b class='flag-5'>算</b>一体 NPU,开启端侧 AI 新征程

    拓维信息自研大模型项目入选湖南省“数字新基建”100个标志性项目

    在数字中国建设全面提速、人工智能与实体经济深度融合的时代背景下,拓维信息自主研发的“基于昇腾&鲲鹏力底座的大模型一体化平台及应用”项目,入选《湖南省“数字新基建”100个标志性项目名
    的头像 发表于 04-22 17:42 969次阅读
    拓维信息自研大<b class='flag-5'>模型</b>项目入选湖南省“数字新<b class='flag-5'>基建</b>”100个标志性项目

    智能力最具潜力的行业领域

    智能力最具潜力的行业领域 一、金融行业 智能风控与精准服务‌:大型银行通过力集群(6.27万台服务器)支撑AI
    的头像 发表于 04-11 08:20 1041次阅读
    智能<b class='flag-5'>算</b>力最具潜力的<b class='flag-5'>行业</b>领域

    力接棒力,慧荣科技以主控技术突破AI存储极限

    电子发烧友网报道(文/黄山明)在AI的高速增长下,尤其是以DeepSeek为代表的AI大模型推动存储需求激增,力增长倒逼力升级。而存储是AI生态的基础,力将成为未来增长核心已成为
    的头像 发表于 03-19 01:29 2349次阅读
    <b class='flag-5'>存</b>力接棒<b class='flag-5'>算</b>力,慧荣科技以主控技术突破AI存储极限

    济南市中区一体化智中心上线DeepSeek

    济南市中未来产业发展有限公司(简称“市中产发”)联合华为、北京昇腾和清昴智能基于市中区一体化智中心(国家大学科技园节点)昇腾力部署DeepSeek-V3和DeepSeek-R1
    的头像 发表于 02-19 10:38 1175次阅读

    软通动力天元智接入DeepSeek系列模型

    近日,软通动力天元智模型网关迎来重磅升级,正式接入DeepSeek系列模型,为企业生产力提升带来全新助力。
    的头像 发表于 02-10 09:44 878次阅读

    一体行业2024年回顾与2025年展望

    2024年,大模型技术的迅猛发展成为人工智能领域的核心驱动力,其对硬件力和存储效率的极致需求,促使一体技术在全球范围内迎来前所未有的关
    的头像 发表于 01-23 11:24 1689次阅读