0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

谈谈SiC MOSFET的短路能力

英飞凌工业半导体 2023-08-25 08:16 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

电力电子的很多应用,如电机驱动,有时会出现短路的工况。这就要求功率器件有一定的扛短路能力,即在一定的时间内承受住短路电流而不损坏。

目前市面上大部分IGBT都会在数据手册中标出短路能力,大部分在5~10us之间,例如英飞凌IGBT3/4的短路时间是10us,IGBT7短路时间是8us。

而大部分的SiC MOSFET都没有标出短路能力,即使有,也比较短,例如英飞凌的CoolSiCTM MOSFET单管封装器件标称短路时间是3us,EASY封装器件标称短路时间是2us。

为什么IGBT和SiC MOSFET短路能力差这么多,这是SiC天生的缺陷吗?今天我们简单分析一下。

先以IGBT为例,看一下短路时,功率器件内部发生了什么?

功率器件正常工作时处于饱和区,CE电压很低,此时器件电流随CE电压提高而上升。随着CE电压进一步提升,反型层沟道被夹断,器件电流相对保持稳定,不再随CE电压上升而上升,我们称之为退出饱和区。在IGBT的输出特性曲线上,我们能看到明显的退饱和现象。

93c3b5e8-42dc-11ee-8e12-92fbcf53809c.png

(a) IGBT工作在饱和区

93d56f72-42dc-11ee-8e12-92fbcf53809c.png

(b) IGBT退出饱和区,

沟道夹断

93e78298-42dc-11ee-8e12-92fbcf53809c.png

IGBT输出特性曲线

有的SiC MOSFET没有短路能力,是因为它没有退饱和特性吗?非也,SiC MOSFET也有退饱和特性,只不过对于MOSFET,工作区的命名方式和IGBT正好相反,正常工作的状态为线性区。当DS之间电压上升到一定程度后,沟道夹断,电流随DS电压上升的趋势变小,这时MOSFET进入了饱和区。只不过从输出特性上看,对于SiC MOSFET,进入饱和的拐点不太明显。

94053568-42dc-11ee-8e12-92fbcf53809c.png

我们以下图为例,来说明SiC MOSFET的一类短路过程。这是两个45mΩ 1200V CoolSiC MOSFET的短路波形:一个是4脚的TO-247封装,另一个是3脚TO-247封装。图中显示了两者在VDS=800V的直流电压下的情况。

941cc12e-42dc-11ee-8e12-92fbcf53809c.png

短路刚开始发生时,漏极电流迅速上升,很快到达一个峰值。由于开尔文源设计中的反馈回路减少,4脚TO-247封装的MOSFET的电流上升得更快,在短路事件开始时,它也显示出较少的自热,峰值电流很高,超过300A。相反,3脚TO-247封装的器件显示出较小的峰值电流。造成这种情况的主要原因是di/dt作用于3脚元件的功率回路中的杂散电感,产生的瞬时电压对VGS产生负反馈,从而降低了开关速度。随后,短路电流引起SiC MOSFET芯片结温上升,沟道迁移率μn随之降低,同时叠加JFET效应,使得短路电流自峰值后开始下降,漏极电流下降到大约150A,直至关断。测试波形证明了两种封装的TO-247 CoolSiC MOSFET的典型3μs短路能力。对于功率模块,根据相关的目标应用要求,目前的短路能力最高为2μs。我们的CoolSiC MOSFET是第一个在数据表中保证短路耐受时间的器件。

TO247 3pin 封装的IMW120R030M1H中,关于短路时间的定义:

94451a8e-42dc-11ee-8e12-92fbcf53809c.png

EASY封装的FF33MR12W1M1H中,关于短路时间的定义:

94517a2c-42dc-11ee-8e12-92fbcf53809c.png

大部分IGBT短路时间在5~10μs,SiC MOSFET器件短路时间相对比较低,主要原因有以下几点:

1

通过以上分析,我们可以看到,当功率器件处于短路状态时,短路电流相对恒定。对于IGBT来说,短路电流一般是额定电流的4~6倍,而SiC MOSFET的短路电流一般可达额定电流的10倍。这一点从二者的输出特性曲线就可以看出来。

9462b3be-42dc-11ee-8e12-92fbcf53809c.png

2

当功率器件短路时,器件承受母线电压,电场分布在整个漂移区。因为SiC材料的临界电场强度约是Si材料的10倍,因此,要达到同样的耐压等级,SiC MOSFETI漂移区仅需要Si IGBT的十分之一。这意味着SiC MOSFET短路时发热热量更集中,温度也更高。

94754d3a-42dc-11ee-8e12-92fbcf53809c.png

3

SiC MOSFET芯片面积小于同电流等级的IGBT,电流密度更高,热量更集中。

综上所述,SiC MOSFET面积小、短路电流高、漂移层薄等特性,导致其短路时发热量集中,相对IGBT来说,短路时间就相对短一些。

是不是SiC MOSFET短路能力就一定不如IGBT呢?也并不是这样。功率器件的短路能力都是设计出来的,短路能力需要和其他性能做折衷。比如增加器件沟道密度,MOSFET的导通电阻会下降,但相应的,电流密度更高,短路电流会更大,因此短路时间下降。

除了导通电阻,SiC MOSFET短路能力设计还要考虑耐压、损耗、寿命等多种因素。可以设计一个损耗极低但没有短路能力的器件,也可以稍微牺牲一点性能,使器件具备短路能力,从而提升整体系统的可靠性。选择哪一个方向,使器件最终呈现什么样的性能,都是针对目标应用权衡的结果。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • MOSFET
    +关注

    关注

    150

    文章

    9440

    浏览量

    229757
  • 电压
    +关注

    关注

    45

    文章

    5757

    浏览量

    121017
  • IGBT
    +关注

    关注

    1287

    文章

    4268

    浏览量

    260562
  • 短路
    +关注

    关注

    5

    文章

    620

    浏览量

    32494
  • SiC
    SiC
    +关注

    关注

    32

    文章

    3528

    浏览量

    68232
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    SiC-MOS与IGBT抗短路能力对比

    在IGBT为主流的时代,提到抗短路能力,就是有或者没有。如果器件具备抗短路能力,那就是比较能抗,一般不容易引起失效。但是SiC-MOS给人的
    的头像 发表于 11-06 09:15 6720次阅读
    <b class='flag-5'>SiC</b>-MOS与IGBT抗<b class='flag-5'>短路</b><b class='flag-5'>能力</b>对比

    浅谈SiC MOSFET器件的短路耐受能力

    SiC MOSFET器件的短路耐受能力,在高压和低压应用是有所不同的,在耐受时间上通常在‌2-7μs‌范围内。多数规格书标称的短路时间是供应
    的头像 发表于 09-02 14:56 898次阅读
    浅谈<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>器件的<b class='flag-5'>短路</b>耐受<b class='flag-5'>能力</b>

    三菱电机SiC MOSFET在电动汽车中的应用(2)

    随着市场需求的不断增长,SiC MOSFET在电动汽车中的应用日益广泛,已经成为推动电动汽车电气化和高效能的重要技术之一。上一篇我们介绍了三菱电机SiC MOSFET模块的芯片、封装和
    的头像 发表于 08-08 16:14 3101次阅读
    三菱电机<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>在电动汽车中的应用(2)

    一文探究SiC MOSFET短路鲁棒性

    SiC MOSFET具有导通电阻低、反向阻断特性好、热导率高、开关速度快等优势,在高功率、高频率应用领域中占有重要地位。然而,SiC MOSFET面临的一个关键挑战是降低特征导通电阻(
    的头像 发表于 08-04 16:31 2851次阅读
    一文探究<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的<b class='flag-5'>短路</b>鲁棒性

    SiC MOSFET计算损耗的方法

    本文将介绍如何根据开关波形计算使用了SiC MOSFET的开关电路中的SiC MOSFET的损耗。这是一种在线性近似的有效范围内对开关波形进行分割,并使用近似公式计算功率损耗的方法。
    的头像 发表于 06-12 11:22 1973次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>计算损耗的方法

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    0  引言SiC-MOSFET 开关模块(简称“SiC 模块”)由于其高开关速度、高耐压、低损耗的特点特别适合于高频、大功率的应用场合。相比 Si-IGBT, SiC-MOSFET 开关速度更快
    发表于 04-23 11:25

    麦科信光隔离探头在碳化硅(SiCMOSFET动态测试中的应用

    碳化硅(SiCMOSFET 是基于宽禁带半导体材料碳化硅(SiC)制造的金属氧化物半导体场效应晶体管,相较于传统硅(Si)MOSFET,具有更高的击穿电压、更低的导通电阻、更快的开关
    发表于 04-08 16:00

    SiC MOSFET短路特性和短路保护方法

    在光伏逆变器、车载充电器及牵引逆变器等应用领域中,由第三代半导体材料碳化硅(SiC)制成的SiC MOSFET正逐步替代由传统硅基(Si)制成的Si IGBT。
    的头像 发表于 03-12 10:35 2232次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>的<b class='flag-5'>短路</b>特性和<b class='flag-5'>短路</b>保护方法

    Nexperia SiC MOSFET LTspice模型使用指南

    电子发烧友网站提供《Nexperia SiC MOSFET LTspice模型使用指南.pdf》资料免费下载
    发表于 02-13 17:21 2次下载
    Nexperia <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b> LTspice模型使用指南

    沟槽型SiC MOSFET的结构和应用

    MOSFET(U-MOSFET)作为新一代功率器件,近年来备受关注。本文将详细解析沟槽型SiC MOSFET的结构、特性、制造工艺、应用及其技术挑战。
    的头像 发表于 02-02 13:49 1849次阅读

    SiC MOSFET的参数特性

    碳化硅(SiCMOSFET作为宽禁带半导体材料(WBG)的一种,具有许多优异的参数特性,这些特性使其在高压、高速、高温等应用中表现出色。本文将详细探讨SiC MOSFET的主要参数特
    的头像 发表于 02-02 13:48 2415次阅读

    驱动Microchip SiC MOSFET

    电子发烧友网站提供《驱动Microchip SiC MOSFET.pdf》资料免费下载
    发表于 01-21 13:59 2次下载
    驱动Microchip <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>

    SiC MOSFET分立器件及工业模块介绍

    BASiC国产SiC碳化硅MOSFET分立器件及碳化硅功率SiC模块介绍
    发表于 01-16 14:32 2次下载

    国产SiC MOSFET,正在崛起

    来源:电子工程世界 SiC(碳化硅),已经成为车企的一大卖点。而在此前,有车企因是否全域采用SiC MOSFET,发生激烈舆论战。可见,SiC这一市场在汽车领域颇有潜力。 不过,近几年
    的头像 发表于 01-09 09:14 911次阅读
    国产<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>,正在崛起

    什么是MOSFET栅极氧化层?如何测试SiC碳化硅MOSFET的栅氧可靠性?

    具有决定性的影响。因此,深入理解栅极氧化层的特性,并掌握其可靠性测试方法,对于推动碳化硅 MOSFET的应用和发展具有重要意义。今天的“SiC科普小课堂”将聚焦于“栅极氧化层”这一新话题:“什么是栅极
    发表于 01-04 12:37