摘要:针对越来越明显的大功率电子元器件的散热问题,主要综述了目前氮化硅陶瓷作为散热基板材料的研究进展。对影响氮化硅陶瓷热导率的因素、制备高热导率氮化硅陶瓷的方法、烧结助剂的选择、以及氮化硅陶瓷机械性能和介电性能等方面的最新研究进展作了详细论述,最后总结了高热导率氮化硅作为散热基板材料的发展趋势。

























参考文献:
DOI:10.13957/j.cnki.tcxb.2018.01.002

陶瓷与金属AMB
审核编辑 :李倩
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。
举报投诉
-
散热基板
+关注
关注
0文章
19浏览量
6027 -
介电性能
+关注
关注
0文章
4浏览量
1746 -
氮化硅
+关注
关注
0文章
91浏览量
644
原文标题:高导热率氮化硅散热基板材料的研究进展
文章出处:【微信号:中科聚智,微信公众号:中科聚智】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
相关推荐
热点推荐
AMB覆铜陶瓷基板迎爆发期,氮化硅需求成增长引擎
原理是在高温真空环境下,利用含有钛、锆、铪等活性元素的金属焊料,与氮化铝(AlN)或氮化硅(Si₃N₄)陶瓷表面发生化学反应,生成可被液态钎料润湿的稳定反应层,从而将纯铜箔牢固焊接在陶瓷基板上。 相比传统的DBC(直接键合铜
高抗弯强度氮化硅陶瓷晶圆搬运臂解析
对比其他工业陶瓷材料的优缺点,接着介绍制品的生产制造过程及适用工业应用,以展示其在现代科技中的重要性。 氮化硅陶瓷搬运臂 氮化硅陶瓷的物理化学性能突出,主要体现在高强度、高硬度和优异的耐环境性上。在物理性能方面,
氮化硅陶瓷基板:新能源汽车电力电子的散热革新
在新能源汽车快速发展的今天,电力电子系统的性能提升已成为行业竞争的关键。作为核心散热材料的 陶瓷基板 ,其技术演进直接影响着整车的能效和可靠性。在众多陶瓷材料中,
氮化硅陶瓷射频功率器件载体:性能、对比与制造
氮化硅陶瓷凭借其独特的物理化学性能组合,已成为现代射频功率器件载体的关键材料。其优异的导热性、绝缘性、机械强度及热稳定性,为高功率、高频率电子设备提供了可靠的解决方案。
从氧化铝到氮化铝:陶瓷基板材料的变革与挑战
在当今电子技术飞速发展的时代,陶瓷基板材料作为电子元器件的关键支撑材料,扮演着至关重要的角色。目前,常见的陶瓷基板材料主要包括氧化铝(Al2O3)、氮化铝(AlN)、碳
氮化硅AMB陶瓷覆铜基板界面空洞率的关键技术与工艺探索
在现代电子封装领域,氮化硅(Si?N?) AMB陶瓷覆铜 基板凭借其卓越的热导率、低热膨胀系数以及优异的电气绝缘性能,逐渐成为高端电子设备的关键材料。然而,铜/陶瓷界面的空洞率问题却成
通过LPCVD制备氮化硅低应力膜
传感器等的钝化层使用。氮化硅的导电带隙约为 5eV,比热氧化物低很多,但它没有浅施主和受主能级,所以表现为绝缘体。由于SiN具有约为1014Ω•cm的电阻率和107V/cm的介电强度,它通常作为绝缘层
氮化硅在芯片制造中的核心作用
在芯片制造这一复杂且精妙的领域中,氮化硅(SiNx)占据着极为重要的地位,绝大多数芯片的生产都离不开它的参与。从其构成来看,氮化硅属于无机化合物,由硅元素与氮元素共同组成。这种看似普通的元素组合,却蕴含着诸多独特的性质,在芯片制造流程里发挥着不可替代的作用 。
LED灯具散热设计中导热界面材料的关键作用
随着LED照明技术向高功率、小型化方向发展,散热问题已成为制约产品寿命与光效的核心瓶颈。研究表明,LED芯片每降低10℃工作温度,其使用寿命可延长约2倍。在散热系统设计中,
发表于 02-08 13:50
LPCVD氮化硅薄膜生长的机理
可以看出, SiH4提供的是Si源,N2或NH3提供的是N源。但是由于LPCVD反应温度较高,氢原子往往从氮化硅薄膜中去除,因此反应物中氢的含量较低。氮化硅中主要由硅和氮元素组成。而PECVD反应

高导热率氮化硅散热基板材料的研究进展
评论