0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

电磁干扰EMI三大解决方法

Meanwellsh 来源:信号完整性学习之路 作者:信号完整性学习之 2022-12-21 09:35 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

EMC的相关知识在之前的文章有写过:电磁兼容(EMC)基础知识

产生EMI(电磁干扰)应采用的相应对策:传导干扰可采取滤波方式,辐射干扰可采用屏蔽和接地等措施,这些方式可以大大提高产品的抵抗电磁干扰的能力,也可以有效地降低对外界的电磁干扰。经常听说解决EMI三大解决方法:接地、滤波、屏蔽。

接地

产品的电路和设备外壳需要与一个公共参考点(一般为大地)相连。接地又可以细分为接安全地和接工作地。

接安全地:产品设备的机壳、机座等,要与大地相接,设备即使存在漏电,也不影响人身安全。

接工作地:信号的参考地平面,产品I/O端口接地等方式,就是接工作地,抑制信号干扰。

针对产品的设计,接地有下面四种情况:

①单点接地与多点接地

信号:工作频率大于10MHz,建议采用多点接地,尽量降低地阻抗。如果采用单点接地,注意信号地长度≤1/20λ。

有的资料提出电子设备是否选择单点接地,主要取决于系统的工作信号频率和接地线的长度,即其表征量L/λ。L/λ<=0.1时,选择单点接地,单点接地的应用范围一般在300kHz以下,在有些场合也可用在1MHz以下。

线缆:线缆屏蔽层的长度以0.15λ为基准,尽量采用多点接地。一般屏蔽层按0.05λ或0.1λ间隔接地。混合接地时,一端屏蔽层接地,一端通过电容接地。

射频:接地线尽量短,当地线长度是λ/4波长的奇数倍时,阻抗会很高,同时相当λ/4天线,向外辐射干扰信号。

②数字模块与模拟模块区分开,数字地与模拟地分开处理

③加粗接地线≥2mm,减小电流变化引起的噪声

接口的接地线闭环,缩小电位差值,提高抗噪声能力

滤波

常见的滤波元器件是电容,电容常用的方式如下图:

1add01e8-80cc-11ed-8abf-dac502259ad0.png

电容的阻抗公式:

1af0719c-80cc-11ed-8abf-dac502259ad0.png

高频时,电容阻抗很小,高频噪声经过此就会短路到地。除了电容,还可以选择滤波器,滤除信号线上不需要的高频干扰成份,解决高频电磁辐射与接收干扰。电源滤波器安装位置应靠近电源线入口处,需要注意的是滤波器要保证良好接地。

滤波的处理有以下四点:

①滤波电路的性能与阻抗匹配的关系很大,源端和负载失配越大,滤波器衰减电磁干扰的能力越强。一般情况下,开关电源表现为低阻抗,负载端设计为高阻抗。

②增减共模和差模电容,调整电容参数和线圈匝数。共模电容的容量越大,共模阻抗越小,共模骚扰抑制效果越好。

③传导干扰的问题可选用低通滤波的方式。

④接口处既有滤波又有防护电路,应该遵从先防护后滤波的原则。

屏蔽

利用屏蔽体来阻挡或减小电磁能传输,可以抑制电磁干扰。屏蔽有两个目的:

①防止内部电磁能量辐射泄露出某区域

②防止外部电磁能量辐射干扰进某区域

衡量屏蔽效能的公式:

1aff3d08-80cc-11ed-8abf-dac502259ad0.png

E1,H1为无屏蔽体时的电场强度和磁场强度

E2,H2为有屏蔽体时的电场强度和磁场强度

1b0cf86c-80cc-11ed-8abf-dac502259ad0.png

高频射频屏蔽的关键是反射,低频磁场屏蔽的关键是吸收。低频的情况下,高电导率的材料吸收衰减少,对磁场屏蔽效果不好,需采用高磁导率的材料(如镀锌铁)。磁场屏蔽还取决于厚度、几何形状、孔洞的线性尺寸。磁屏蔽要求高磁导率的材料做封闭的屏蔽体,为了让涡流产生的磁通和干扰产生的磁通相消达到吸收的目的,对材料也有厚度的要求。

①屏蔽因素

产品的机构设计中,机箱部分为了更好屏蔽电磁辐射,既能照顾到机箱的散热需求,又能有效地防止电磁波的衍射,开孔尺寸一般不超过4mm。需要注意的问题是,对于磁场辐射源,孔洞在近场区的屏蔽效能与电磁波的频率没有关系,也就是说,很小的孔洞也可能导致较大的泄漏。这时影响屏蔽效能的一个更重要参数是孔洞到辐射源的距离。

影响屏蔽因素:缝隙、开孔、电缆穿透等。孔缝泄漏量的因素主要有两个:孔缝面积和孔缝最大线度尺寸。关于屏蔽性能和孔洞的关系公式:

1b2e9512-80cc-11ed-8abf-dac502259ad0.png

SE:屏蔽效能(dB)

L:孔洞的长度(mm)

H:孔洞的宽度(mm)

f:入射电磁波的频率(MHz)

如果L大于λ/2,则SE=0(dB)。这个公式计算的是最坏情况下(造成最大泄露的极化方向)的屏蔽效能,实际情况下屏蔽效能可能会更高一些。

孔洞的问题,先要确定磁场的辐射源是不是在附近,再确定是需要通过重新结构设计还是缩小孔洞尺寸来解决。

缝隙的问题,先检查衬垫情况,再确定是通过安装好相关衬垫还是密封缝隙的方式来解决泄露问题。

电缆的问题,先用上铁氧体磁环看看辐射有没有改善,然后考虑增加磁环,最后考虑滤波器或屏蔽线缆来解决。

②屏蔽与散热

屏蔽和散热是互相矛盾的,散热孔一般是一组孔洞,利用风扇进行强迫对流,这些孔洞将会引起电磁泄漏,使屏蔽效果下降,孔洞越大,屏蔽效果越差。通常系统的外壳都配置了散热孔,这种散热孔会影响整个系统的屏蔽性能。

1b3cb78c-80cc-11ed-8abf-dac502259ad0.png

Ei入射电场强度

Et透射电场强度

SE为0,无屏蔽效果。屏蔽的效果SE要满足相关产品的要求。

③屏蔽处理

屏蔽分两种情况进行,一种是针对干扰源进行屏蔽,另一种为在耦合路径上进行屏蔽。屏蔽干扰源是对辐射比较严重的芯片进行屏蔽,防止干扰源通过空间辐射影响到周边敏感设备。在耦合路径进行屏蔽处理是防止噪声通过互连结构将噪声放大,影响信号质量。需要注意的是屏蔽都要进行接地处理,尽量多点接地。常见的屏蔽处理方式:金属罩屏蔽、铜箔屏蔽等。

在产品设计中,根据产品实际进行屏蔽设计,端口、通风孔、孔洞、连接缝隙的屏蔽性都是值得考虑的因素。要清楚产品所需的屏蔽性能,先要确定辐射源,明确频率范围,再根据各个频段的互连结构,确定控制要素,进而选择恰当的屏蔽材料,设计屏蔽壳体。

审核编辑:郭婷

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • emi
    emi
    +关注

    关注

    54

    文章

    3864

    浏览量

    134126
  • emc
    emc
    +关注

    关注

    174

    文章

    4325

    浏览量

    190376
  • 电磁干扰
    +关注

    关注

    36

    文章

    2465

    浏览量

    107618
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    EMI或EMC测试是屏蔽引起的吗?

    何谓EMI?EMI:一般即称为”电磁干扰性,”电磁干扰(英文:ElectroMagneticIn
    的头像 发表于 11-21 08:04 929次阅读
    <b class='flag-5'>EMI</b>或EMC测试是屏蔽引起的吗?

    有哪些方法可以排除电磁干扰对测试结果的影响?

    排除电磁干扰对测试结果的影响,核心是 **“隔离干扰源→切断耦合路径→强化抗干扰能力→数据校验过滤”** 的全流程防护,结合电能质量监测装置的测试场景(如温度补偿效果验证、精度校准),
    的头像 发表于 11-06 15:30 1040次阅读

    屏蔽线缆的“电磁盾牌”:如何隔绝干扰守护信号纯净

    在智能家居、工业控制、医疗设备等场景中,你是否遇到过信号断续、数据错误甚至设备死机的问题?这些故障的“幕后黑手”往往是电磁干扰(EMI)。而屏蔽线缆,正是对抗EMI的“隐形盾牌”。 1
    的头像 发表于 11-04 10:44 244次阅读

    如何使用吸波材料进行电磁干扰的隔离和消除?

    使用吸波材料隔离和消除电磁干扰EMI),核心是“精准匹配干扰频率 + 合理选择材料形态 + 科学安装布局”—— 吸波材料通过吸收电磁波能量
    的头像 发表于 10-11 16:54 872次阅读
    如何使用吸波材料进行<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>的隔离和消除?

    怎样减少电磁干扰对电能质量在线监测装置的影响?

    减少电磁干扰EMI)对电能质量在线监测装置的影响,需从 硬件设计、安装布线、接地屏蔽、软件优化、运维管理 五个核心维度系统施策,针对电磁干扰
    的头像 发表于 09-19 14:48 481次阅读
    怎样减少<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>对电能质量在线监测装置的影响?

    如何有效减少降压转换器中的电磁干扰EMI)?

    方法EMI的成因与解决在开关模式降压转换器中,电磁干扰EMI)主要是由于高频电流在电路回路中流动所引起的。图1输入电流I1的dI/dt
    的头像 发表于 09-16 08:34 1780次阅读
    如何有效减少降压转换器中的<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>(<b class='flag-5'>EMI</b>)?

    电磁干扰“江湖兄弟”:EMC、EMI、EMS 到底有啥区别?

    电磁干扰“江湖兄弟”:EMC、EMI、EMS 到底有啥区别?
    的头像 发表于 08-20 15:16 1853次阅读
    <b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>“江湖<b class='flag-5'>三</b>兄弟”:EMC、<b class='flag-5'>EMI</b>、EMS 到底有啥区别?

    怎样有效的规避电磁干扰

    电磁干扰的形成有个环节:骚扰源、传播途径、敏感设备,个环节缺一不可,同样个环节的任何一个环节没有有效的控制都会影响到最终的测量数据。
    的头像 发表于 08-18 13:17 418次阅读

    EMI干扰应对:聚徽解码工业触摸屏的「接地屏蔽」优化方案

    、设计优化、实施策略个层面,系统性阐述如何通过「接地屏蔽」技术构建工业触摸屏的「电磁护盾」。 一、EMI干扰的「重暴击」机制 工业环境中
    的头像 发表于 06-20 13:30 865次阅读

    基于是德频谱分析仪的电磁干扰检测与定位方法

    电磁干扰EMI)在现代电子设备中是一个常见且严重的问题,它可能导致设备性能下降甚至完全失效。是德频谱分析仪作为一种高精度的测试仪器,在电磁干扰
    的头像 发表于 06-12 17:02 546次阅读
    基于是德频谱分析仪的<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>检测与定位<b class='flag-5'>方法</b>

    时源芯微 开关电源电磁干扰的控制技术

    要有效解决开关电源的电磁干扰问题,可从以下个关键方面着手:其一,降低干扰源产生的干扰信号强度;其二,阻断
    的头像 发表于 05-20 16:50 512次阅读
    时源芯微 开关电源<b class='flag-5'>电磁</b><b class='flag-5'>干扰</b>的控制技术

    破解电磁干扰困局:EMI干扰磁芯的原理与应用全解析

    在万物互联的智能时代,从5G基站到新能源汽车,从医疗设备到消费电子,电磁兼容性(EMC)已成为衡量产品可靠性的核心指标。而在这场看不见的电磁对抗中,EMI干扰磁芯凭借其独特的
    的头像 发表于 04-29 10:25 1020次阅读

    EMI干扰)和EMS(抗扰)基础知识与整改流程

    EMC主要包含两大项:EMI干扰)和EMS(产品抗干扰和敏感度)。 EMI(Electromagnetic Interference),表示电磁
    发表于 03-28 13:28

    开关电源的共模干扰抑制技术-开关电源共模电磁干扰(EMI)对策详解

    开关电源的共模干扰抑制技术|开关电源共模电磁干扰(EMI)对策详解 0 引言 由于MOSFET及IGBT和软开关技术在电力电子电路中的广泛应用,使得功率变换器的开关频率越来越高,结构
    发表于 03-27 15:07

    开关电源PCB板的EMI抑制与抗干扰设计

    设计,如果这部分设计不当,也会导致电源工作不稳定,产生过量的EMI(电磁干扰)。 1 EM1分类及产生原因 1.1 EM1分类 对于电磁干扰
    的头像 发表于 01-17 10:35 4158次阅读
    开关电源PCB板的<b class='flag-5'>EMI</b>抑制与抗<b class='flag-5'>干扰</b>设计