等离子体中的离子可以利用等离子体的自偏压特性和外加偏压组合,将离子轰击晶圆片表面的能量范围控制在数电子伏 (eV)至数万电子伏,从而可以部分替代传统的离于注入。等离子体掺杂的最大优点是,可以高效地实现超低能量的搭杂,这是因为其工艺过程是在“面”上处理的,而传统的离子注人是在“点”上处理的。对于那些对离子成分和轰击能量纯度要求不高的IC 产品的生产制造,这种工艺非常适合。 等离子体浸没离子注入(Plasme ImmersionlonImplantation,PIII) 或等离子体摻杂 (Plasma Doping, PIAD)系统已经被广泛地开发、应用于需要低能量或高剂量的IC 产品规模生产中(如超浅结和深沟槽应用)。

通常,用射频电源产生高浓度等离子体电离掺杂气体,而用偏置电源加速离子去“轰击”圆片表面。最常用的 PLAD 掺杂气体为 B2H6,用于硼掺杂。对于需要非常高剂量的圆片摻杂的产品,由于离子注入机需要“点”式扫描注入,即使在最高的离子束流下,工艺实施时间仍然较长,产出效率低。而等离子体掺杂则采用等离子体的“面”轰击来替代离子束的 “点”扫描,因此可以大幅度提升产出效率。但是,PLAD 不能选择离子种类,也不能精确控制离子的流量或剂量,因此 PLAD 的主要应用范围是高剂量、非关键层离子注入。目前,PLAD广泛应用于 DRAM 芯片的多晶硅补偿掺杂,以及 DRAM 器件阵列的接触注入。 在等离子体浸没系统中,掺杂离子将轰击圆片,并被注入衬底。掺杂离子流通量主要受外加RF或微波的功率控制,离子的能量主要由偏压的射频功率决定。通过磁铁的电流可以调整磁场的位型,由于低气压下磁化的等离子体受到磁场的约束,因此可以通过磁场来控制摻杂离子流的均匀性。等离子体浸没注入技术是一种低能量过程,离子能量一般小于1keV,所以对于亚0.1um 器件的应用,PIII可以用于形成超浅结。与传统离子注入技术相比,等离子体浸没系统的缺点是无法选择特殊的离子种类,并且由于离子流量受等离子体位置和反应室压力的影响,离子能量分布范围不如传统离子注入那样单纯,容易形成能量污染。所以,等离子体浸没注入系统很难精确控制掺杂物的浓度和结深。
审核编辑 :李倩
-
射频
+关注
关注
106文章
5944浏览量
172787 -
等离子体
+关注
关注
0文章
138浏览量
15070 -
晶圆
+关注
关注
53文章
5344浏览量
131690
原文标题:等离子体掺杂(Plasma Doping)
文章出处:【微信号:Semi Connect,微信公众号:Semi Connect】欢迎添加关注!文章转载请注明出处。
发布评论请先 登录
季丰电子Plasma等离子清洗技术在材料分析的运用
探索微观世界的“神奇火焰”:射频等离子体技术浅谈
PECVD的基本定义和主要作用
高端芯片制造装备的“中国方案”:等离子体相似定律与尺度网络突破
安泰高压放大器在等离子体发生装置研究中的应用
上海光机所在多等离子体通道中实现可控Betatron辐射
通快霍廷格电子携前沿等离子体电源解决方案亮相SEMICON China 2025
等离子体光谱仪(ICP-OES):原理与多领域应用剖析
等离子体蚀刻工艺对集成电路可靠性的影响
等离子体的一些基础知识
OptiFDTD应用:纳米盘型谐振腔等离子体波导滤波器
等离子的基本属性_等离子体如何发生
等离子体电光调制器研究与应用文献
100GHz等离子体电光调制器在低温领域的应用

等离子体掺杂(Plasma Doping)
评论