0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

罗姆研发超轻负载状态下彻底削减消耗电流划时代技术“Nano Energy”

罗姆半导体集团 来源:罗姆半导体集团 作者:罗姆半导体集团 2022-09-14 14:34 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

全球新一轮科技和产业革命正悄悄来临,电动化、网联化、智能化、共享化成为汽车产业的发展潮流和趋势。在汽车新四化的推动之下,汽车电子电气架构从原来的分布式逐渐向跨域集中式和车辆集中式不断演进,汽车电子软件架构不断升级,软件与硬件分层解耦,软件定义汽车的时代即将到来。汽车智能化跑出加速度,中国的新能源车市场向好,ADAS功能搭载率不断攀升,L2正在成为标配,L3开始量产上车。

汽车智能化趋势下

功能安全成为行业关注焦点

随着汽车智能化的推进以及自动驾驶技术创新的日新月异,安全成为行业不约而同的关注焦点。安全分为两种,一种是本质安全,另一种是功能安全。本质安全是通过消除危险原因来确保安全的方法;而功能安全是通过功能方面的努力将风险降低到可接受水平来确保安全的方法。本质安全可以确保绝对的安全性,但是成本往往很高;相比之下,功能安全的成本较低,但在设计时必须考虑到当附加的功能发生故障时应如何确保安全。

举个例子,在铁路和道路交叉口,如果采用建立交桥的方法将铁路和道路分开,从物理上避免火车和汽车碰撞的方法,这是一种本质安全的思路。而如果通过在道路与铁路的交叉处设置警报器和栏杆,在铁路上安装传感器,当传感器检测到火车接近时,警报器响起,并降下栏杆,当另外的传感器检测到火车已经通过时,警报器停止,并升起栏杆,虽然道路与铁路在物理上仍然交叉,但可通过设置铁路道口的方法将汽车和火车相撞的风险降低到可接受的水平,这就是功能安全的思路。当然,在这个案例中,如果传感器损坏,那么在火车接近时,警报器和栏杆就不会工作,这是一种“危险”状态,因此就需要加入传感器的自我诊断或者双传感器的冗余设计,来确保即使传感器损坏也不会引发危险状态的设计,这就是故障安全(Fail Safe)的思路。

由此可知,功能安全其实就是基于“人会犯错”、“东西会损坏”思路之下的一种设计,而功能安全通常要同时考虑到“系统性故障”和“随机性故障”这两方面,来确保没有系统性的Bug,以及当随机性故障发生时不会对人造成伤害。在中国,ISO 26262(功能安全)已纳入推荐性国家标准,ISO 26262的第一版中文译本GB/T 34590已于2018年5月起开始施行。

当然,不止汽车领域有这个要求,很多工业场景同样对安全性要求非常高。为了构建更安全的系统,必须在设备开发过程中就要考虑到在发生问题时如何确保安全,这意味着故障安全和功能安全是贯穿设备开发全流程的。

复位IC为汽车和工业用设备安全保驾护航

讲到汽车和工业应用场景对设备安全性的需求,就不得不提到对系统电源电压进行监控的重要性,而复位IC是电压监控电路中不可或缺的产品之一,目前已经广泛应用于EV/HEV逆变器、引擎控制单元、ADAS、汽车导航系统、汽车空调、FA设备、计量仪器、伺服系统、各种传感器系统等需要对电子电路进行电压监控的各种车载和工业设备应用中。

面向该市场需求,罗姆推出了1000多种复位IC,2021年度,在低电压范围的广泛应用领域,创造了2.5亿枚的年出货量记录。就在近期,罗姆还开发出了一款高精度、超低功耗且支持40V电压的窗口型复位IC “BD48HW0G-C”。

d89b32e0-33e2-11ed-ba43-dac502259ad0.jpg

图 | 复位IC工作示例

那么什么是复位IC呢?复位IC是一种开关IC,可用于电子电路的电压监控,当检测到被监控的电压超过阈值时就会通过改变输出而达到复位操作的效果,因此具有通过与微控制器合作来确保系统安全的作用。就好比河里的水位报警器,当河水漫过最高警戒线或低于最低警戒线时都要拉响警报,并触发放水或蓄水动作,而这里的水位传感器就好比电路中的复位IC,起到的效果是一样的。

罗姆新推的复位IC

“BD48HW0G-C”有何特别之处?

同样是复位IC,为什么要有这么多类型?罗姆最新推出的复位IC “BD48HW0G-C”又有什么特色或优势呢?由于应用场景的不同,系统电路对复位IC精度、功耗、工作电压、功能安全、监控电压范围、欠压/过压检测等需求都不一样,因此需要开发出不同的复位IC来匹配相应的市场需求。

罗姆窗口型复位IC产品阵容

d8d5d6a2-33e2-11ed-ba43-dac502259ad0.png

如需查看相关数据表,请点击 BD48HW0G-C、BD48W00G-C、BD52W01G-C、BD52W02G-C、BD52W03G-C、BD52W04G-C、BD52W05G-C、BD52W06G-C。

Nano标记产品为搭载Nano Energy超低静态电流技术的产品。

* FS supportive: 表示这是面向车载领域开发的IC,支持与功能安全相关的安全性分析。

罗姆最新推出的复位IC “BD48HW0G-C”是一款支持40V电压的窗口型复位IC,由于采用了高耐压的BiCDMOS工艺,并融合了罗姆所擅长的模拟设计技术,BD48HW0G-C工作电压范围宽至1.8V~40V可调。关于窗口型的设计,由于BD48HW0G-C配有2个独立的基准电压电路,因此可以灵活地设置High侧和Low侧的检测电压,并独立复位检测输出。在检测精度方面,BD48HW0G-C在-40℃-+125℃温度范围内可实现业界先进的±0.75%电压检测精度,高于业界标准产品的精度±2.2%。在功耗方面,BD48HW0G-C的静态电流只有500nA,仅为普通的工作电压24V以上的窗口型复位IC的1/16,这使得工程师在设计电路时无需担心因复位电路而产生的功耗增加。

d98156d0-33e2-11ed-ba43-dac502259ad0.jpg

图 | 在全动作温度范围内的高精度复位IC更易于系统设计

为何在车载和工业领域需要强调在全动作温度范围内的、稳定的高精度特性呢?我们知道,如果只是在25℃下有值偏离的问题,那么可以通过固定补偿进行调整,比较容易实现。但是在汽车和工业应用中,环境温度以及机身自身发热和散热的情况差别较大,电源电压和复位检出电压受温度的影响会产生波动,这种受温度影响下的偏离是非常难修正的,因此对于车载和工业环境,选择全动作温度范围内的、稳定的高精度复位IC更易于系统设计,从而减轻客户的设计负担。此外,在车载和工业环境下,通常环境噪声较大,当外部噪声侵入时,如果检测出电压的精度差,那么容易发生误动作,因此为了避免或减少外部噪声的影响,提高系统运行的可靠性,高精度复位IC是更好的选择。

值得一提的是,罗姆从2015年就已经开始构建ISO 26262的流程,并在约2年半后的2018年3月,通过德国第三方认证机构TÜV Rheinland获得了ISO 26262的流程认证。正因为对ISO 26262规格以及应用电路有着高度理解,罗姆针对需要功能性安全的车载和工控电源,开发了支持从低到高的广泛电压范围的、高精度地检测电压异常的复位IC。

实现模拟电源器件超低功耗的秘密

Nano Energy

前面提到,BD48HW0G-C的静态电流只有500nA,仅为普通的工作电压24V以上的窗口型复位IC的1/16,如此超低功耗是如何实现的呢?

事实上,罗姆采用的是IDM的模式,在这种垂直统合型生产体制下,罗姆在“电路设计”、“布局”和“工艺”这三方面都具有更深的经验累积和更强的模拟技术优势。基于此,罗姆研发出了超轻负载状态下彻底削减消耗电流的划时代技术“Nano Energy”。使用该技术,无负载时的静态电流可低至纳安(nA)量级,不仅可以延长电池供电的物联网设备和移动设备的驱动时间,还有助于不希望增加功耗的车载和工业设备的高效率工作。

举个例子,我们知道,新能源汽车是实现全球“双碳计划”的重要组成部分,对于EV/HEV来讲,提高燃油经济性,增加行驶里程势在必行,于是低功耗化就会变得尤为重要。其次,当汽车怠速熄火时,发动机会停止运转,电池将提供功能所需的电力。再者,当在停车时,时钟在后台运转、报警系统开启、无钥匙系统开启等都将直接由电池供电,存在电池耗尽的风险。因此,进一步降低电源IC的电流消耗是刚需,而通过搭载Nano Energy技术,可以为整个汽车系统的低功耗做贡献。此外,低静态电流带来的不只有延长电池供电设备寿命一个好处,同时对于汽车和工业应用来说,还能减少电路中的暗电流,有助于EMC的改善。

审核编辑:彭静
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 智能化
    +关注

    关注

    15

    文章

    5211

    浏览量

    59754
  • 罗姆
    +关注

    关注

    5

    文章

    439

    浏览量

    67578
  • 自动驾驶
    +关注

    关注

    791

    文章

    14684

    浏览量

    176849

原文标题:汽车智能化加速落地,罗姆为安全筑起高墙

文章出处:【微信号:罗姆半导体集团,微信公众号:罗姆半导体集团】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    技术深解 | 永铭低漏电流固态电容如何实现待机功耗突破?数据与工艺全解析

    问题场景与痛点描述在便携式电子设备设计中,静态功耗控制一直是工程师面临的挑战。尤其是在充电宝、多合一移动电源等应用中,即便主控IC进入休眠,电容漏电流仍持续消耗电池能量,导致“无负载耗电
    的头像 发表于 10-09 10:49 296次阅读
    <b class='flag-5'>技术</b>深解 | 永铭低漏<b class='flag-5'>电流</b>固态电容如何实现待机功耗突破?数据与工艺全解析

    将携众多先进解决方案和技术亮相2025 PCIM Asia Shanghai

    的SiC和GaN产品和技术。同时,还将在现场举办技术研讨会,分享其最新的电力电子解决方案。
    的头像 发表于 09-17 15:59 316次阅读
    <b class='flag-5'>罗</b><b class='flag-5'>姆</b>将携众多先进解决方案和<b class='flag-5'>技术</b>亮相2025 PCIM Asia Shanghai

    邀您相约PCIM Asia Shanghai 2025

    设备和汽车领域中卓越的SiC和GaN产品和技术。同时,还将在现场举办技术研讨会,分享其最新的电力电子解决方案。
    的头像 发表于 09-10 14:34 754次阅读

    对PSOC6的电流消耗疑问求解

    我对 PSOC6 的电流消耗有疑问。 我知道通常情况,较低的电压消耗较少的电流,但是 当我查看数据表时,3.3V 时的
    发表于 08-11 06:44

    与猎芯网签署正式代理销售协议

    ~同步启动面向中国市场的“ROHM官方技术论坛(Engineer Social Hub™)”技术支持服务~ 全球知名半导体制造商(总部位于日本京都市)今日宣布,与中国电子元器件平台
    的头像 发表于 07-22 09:25 396次阅读
    <b class='flag-5'>罗</b><b class='flag-5'>姆</b>与猎芯网签署正式代理销售协议

    MOSFET单脉冲雪崩击穿能量的失效模式

    单脉冲雪崩击穿能量(Energy during avalanche for single pulse),即 EAS。指的是MOSFET器件串联感性负载时,在单次脉冲(工作到关断)状态下,所能承受的最大能量
    的头像 发表于 05-15 15:32 3539次阅读
    MOSFET单脉冲雪崩击穿能量的失效模式

    LPC1788 VBAT引脚消耗电流大是怎么回事?

    状态和深度断电状态下也能保持恒定。起初我认为是芯片硬故障 (ESD),我更换了它们。但是明天我找到了一个芯片,它第一次工作 I(VBAT) = 1uA,然后故障 I(VBAT) = 55 mA,然后再次工作 I(VBAT) = 1uA。 有人见过这种现象吗?这可能是固件问
    发表于 04-10 06:16

    ROHM()传感器_MEMS选型指南

    ROHM()传感器_MEMS选型指南
    发表于 04-01 15:58 3次下载

    MOSFET系列产品的优势和特点

    高效能与低功耗已成为产品设计的核心需求,凭借其创新的技术和卓越的产品性能,为各行各业不断提供可靠的解决方案。
    的头像 发表于 03-27 14:15 1118次阅读
    <b class='flag-5'>罗</b><b class='flag-5'>姆</b>MOSFET系列产品的优势和特点

    单片ADA4522-4消耗电流正常应该是多大?温度大致应该在多少?

    ~±4.6V输入矩形波信号进行5倍放大; 问题描述:经测试,1片ADA4522-4消耗电流约为70mA,这样的话16片合计消耗1.12A,大大超出了ADP5071带载能力(±26.5V的负载设计规格为
    发表于 03-24 06:40

    充电桩负载测试技术

    充电桩负载测试技术是确保电动汽车充电设施可靠性和安全性的关键环节,以下是对这一技术的详细阐述: 保障安全性能:模拟各种充电场景和故障情况,检测充电桩在过压、过流、欠压、欠流、短路等异常状态下
    发表于 02-27 11:09

    半导体宣布2025财年换帅

    近日,日本半导体宣布了一项重要人事变动,计划在2025财年伊始(即2025年4月1日)进行高层调整。现任董事会成员东克己将接替松本功,担任半导体的总裁兼CEO,而松本功则将转任
    的头像 发表于 01-22 14:01 1023次阅读

    功率半导体产品概要

    )排放量增加已成为严重的社会问题。因此,为了实现零碳社会,努力提高能源利用效率并实现碳中和已成为全球共同的目标。 在这种背景致力于通过电子技术解决社会问题,专注于开发在大功率应
    的头像 发表于 01-15 17:26 868次阅读
    <b class='flag-5'>罗</b><b class='flag-5'>姆</b>功率半导体产品概要

    阻性负载的重要作用

    限制电流来保护其他敏感元件免受损坏。 此外,阻性负载还可以帮助吸收瞬态电压尖峰,从而保护电路中的其他元件。 温度控制与调节: 阻性负载通过消耗电能来产生热量,这使其成为理想的温度控制元
    发表于 01-07 15:18

    DAC7811在哪种错误状态下,或者错误的控制会输出正压吗?

    错误状态下,输出如下: 通道3(蓝色),为DAC输出经运放转变后的电压,可看出为+1.5V,通道1通道2(黄色、绿色)为后级差分运放输出; DAC7811在哪种错误状态下,或者错误的控制会输出正压吗?
    发表于 12-24 08:15