0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

光滑表面上功能液滴的主动操纵

微流控 来源:微流控 作者:微流控 2022-09-09 09:33 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

液滴操纵在生物过程中无处不在,在能源、微流体、微反应器、生物分析和医疗设备等技术应用中也必不可少。受自然生物的启发,研究人员已开发出许多功能性表面来操纵液滴。例如,通过配置可切换的表面润湿性来实现响应性的疏水表面。然而,目前大多数的液滴操纵方式都是基于响应性的表面,被动地实现操纵。很少有报道能实现液滴在水平方向甚至反重力方向的主动操纵。在这些工作中,液滴的操纵在很大程度上取决于响应性表面。然而,响应性表面的制备总是需要特定的响应性材料。同时,并非应用场景中的所有表面都具有响应性,因此无法实现液滴操纵。因此,这种被动操纵方式的应用受到严格限制。目前,在传统的非响应性光滑表面上对功能性液滴进行主动操纵仍然是一个巨大的挑战。 鉴于此,北京航空航天大学江雷院士、衡利苹研究员等提出了一种通用的主动操纵方法,实现了在光照射、电场和磁场下在无响应的光滑表面上对光热液滴、电液滴和磁液滴的主动操纵。该工作还展示了在外部刺激下对不同液滴的聚结、微反应、反重力操纵和筛选。该项工作可以为不依赖于表面响应性的主动操纵液滴提供一种可行的策略,并推动化学检测、微流体、生物分析和药物的发展。该研究以题为“Active Manipulation of Functional Droplets on Slippery Surface”的论文发表在最新一期Advanced Functional Materials期刊上。

a9fd2af0-2fdd-11ed-ba43-dac502259ad0.png

光滑表面的制备过程为了方便地操纵功能性液滴,研究人员构建了一个稳定的光滑凝胶表面。如图1a所示,研究人员用旋涂的方式在玻璃基板上制备了PDMS基底。接着,在PDMS表面涂抹硅油后,获得了光滑的PDMS表面。该方法制备的PDMS表面在浸泡硅油后几乎看不到明显的褶皱(图 1g),保证了其光滑性,这为在光滑表面上自由操纵功能性液滴提供了基础。

aa8358c8-2fdd-11ed-ba43-dac502259ad0.png


图1PDMS基底的制造过程以及制备的硅油/PDMS光滑表面。通过光照、电场主动操纵液滴研究人员将光热性能良好的碳纳米管加入液滴中,制备了光热响应型液滴。为了实现对光滑表面上光热液滴的有效操纵,需要不对称的光照射。使用氙弧灯作为光源,如图2b所示,光强度从中心向边缘逐渐减小。在操纵光热液滴时,光斑中心准确地聚焦在液滴的左边。如图2c-f所示,在光照射几秒钟后,光热液滴开始在光滑的表面上移动。在非对称光源的照射下,液滴会不断移动,直到整个液滴在暗区移动,最后停止。通过光照实现主动操纵的原理是利用了在不对称光斑下,液滴两侧的温度不同。当光斑中心作用于液滴的左侧时,左侧的温度会高于右侧的温度,温度差异(ΔT)会引起液滴内的Marangoni流动,并随后形成驱动液滴的驱动力。

aac3cb24-2fdd-11ed-ba43-dac502259ad0.png


图2 通过光操纵液滴 为了展示液滴的电驱动,研究人员选用四种液滴包括水、二甲基亚砜(DMSO)、十二烷基三甲基溴化铵(DTAB)溶液和1-乙基-3-甲基咪唑双(三氟甲基磺酰)亚胺(离子液体,[EMIm]NTf₂) 作为模型电滴。首先,研究人员用尼龙滤膜摩擦PDMS基板,来使光滑表面带电(图3a)。带电的 PDMS基板表现出很强的负电位(图3b)。如图3d-g所示,随着金属电极的靠近,当距离减小到一定值时,液滴会被驱动。随着液滴的向前移动,距离的逐渐增加,静电相互作用会逐渐减少,减慢液滴的移动速度。一旦移动距离达到某个值,驱动力将变得小于流体动力阻力。最终,电滴会迅速停在光滑的表面上。实验结果表明,液滴的移动距离符合以下顺序:DMSO>DTAB>水> [EMIm]NTf₂(图3h)。

aaf06d82-2fdd-11ed-ba43-dac502259ad0.png


图3 通过电场操纵功能性液滴在光滑表面上运动

ab3a1f54-2fdd-11ed-ba43-dac502259ad0.png


图4 通过电场操纵液滴在溶液表面运动通过磁场主动操纵液滴最后,研究人员展示了通过磁场对液滴进行主动操纵。将磁性Fe₃O₄纳米粒子添加到水中以制备磁性液滴。实验结果表明Fe₃O₄含量对液体表面张力没有明显影响。基于磁吸引力,磁滴可以通过磁铁驱动。通过调整液滴与安放在液滴右下方的磁铁之间的距离来测量磁液滴的最大移动距离。实验结果表明,含有少量Fe₃O₄的液滴滑动缓慢,含有大量Fe₃O₄的液滴能够快速移动。 通过磁场对液滴进行简单的磁操纵是由于液滴和磁体之间的磁力。如图5i₁所示,在没有磁铁的情况下,液滴内的Fe₃O₄纳米颗粒的磁畴是无序的。在这种状态下,没有磁力产生,液滴表现出较大的接触角。当施加对称的磁场时,液滴内的Fe₃O₄纳米颗粒的磁畴沿磁感应线有序排列(图 5i₂)。以这种方式,产生了液滴和磁体之间的磁力。基于这种原理,研究人员通过0.4T磁场对不同磁性液滴进行聚结、反重力操纵和筛选操作(图6)。

ac762462-2fdd-11ed-ba43-dac502259ad0.png


图5 通过磁场操纵液滴在光滑表面上运动

acd4cec2-2fdd-11ed-ba43-dac502259ad0.png


图6 通过磁场操纵液滴进行水平滑动、反重力运动、聚结和筛选 综上所述,该工作成功实现了在光照射、电场和磁场下在无响应的光滑表面上对光热液滴、电液滴和磁液滴的主动操纵。与之前报道的操纵模式相比,该工作引入了一种通用的主动操纵方法并规避了对表面响应性的需求。该方法能够在外部刺激的触发下,成功完成光滑表面上不同液滴的聚结、反重力操纵、微反应和筛选。这一成果将为独立于表面响应性的液滴的主动操纵以及化学检测、微流体、生物分析和药物中的相关技术应用提供新的见解。

原文链接:

https://doi.org/10.1002/adfm.202207738

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 碳纳米管
    +关注

    关注

    1

    文章

    158

    浏览量

    17662
  • 微流体
    +关注

    关注

    0

    文章

    38

    浏览量

    8799

原文标题:光滑表面上实现主动操纵功能性液滴,推动生化检测和微流体等发展

文章出处:【微信号:Micro-Fluidics,微信公众号:微流控】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    功率放大器在基于脉冲气流的喷射方法研究的应用

    该技术主要利用控制气流通道的通断状态从而形成周期性的脉冲气流,脉冲气流流入喷射装置内并作用于微通道内的液体,对微通道内的液体产生强烈剪切,在脉冲气流的速度与压力作用下,使液体断裂形成
    的头像 发表于 12-09 16:36 321次阅读
    功率放大器在基于脉冲气流的<b class='flag-5'>液</b><b class='flag-5'>滴</b>喷射方法研究的应用

    电压放大器基于压电-声流效应的滴定向驱动实验的应用

    实验名称: 基于压电-声流效应的滴定向驱动特性实验 研究方向: 热流科学与工程、压电声学交叉领域 实验目的: 验证基于压电-声流效应的滴定向驱动技术可行性,明确该技术能否在低电压下实现冷凝
    的头像 发表于 11-10 11:33 119次阅读
    电压放大器基于压电-声流效应的<b class='flag-5'>液</b>滴定向驱动实验的应用

    ATA-1372A宽带放大器:超声驱动微制备系统的核心引擎

    。 实验名称:ATA-1372A宽带放大器在超声驱动喷嘴微制备系统中的应用 实验方向:微流控 实验设备:ATA-1372A宽带放大器、高速相机,信号发生器,示波器、上位机等 实
    的头像 发表于 10-28 16:10 290次阅读
    ATA-1372A宽带放大器:超声驱动微<b class='flag-5'>液</b><b class='flag-5'>滴</b>制备系统的核心引擎

    ATA-2161高压放大器与微流控芯片分选:精准操控与高效应用

    ATA-2161高压放大器放大后施加至充电电极,使得表面积累电荷。带电在偏转电极产生的电场作用下定向偏转至目标收集通道。实验分析了
    的头像 发表于 09-16 11:35 354次阅读
    ATA-2161高压放大器与微流控芯片<b class='flag-5'>液</b><b class='flag-5'>滴</b>分选:精准操控与高效应用

    应用案例 | 深视智能高速摄像机在超疏水材料蒸发动力学研究中的应用

    01微观传热的前沿挑战在高效热管理系统、航天器热防护、电子芯片冷却及能源化工等领域,研究液体在高温固体表面的蒸发机制具有重大意义。超疏水材料因其独特的表面特性,能够显著改变的润湿行
    的头像 发表于 09-15 08:19 418次阅读
    应用案例 | 深视智能高速摄像机在超疏水材料<b class='flag-5'>液</b><b class='flag-5'>滴</b>蒸发动力学研究中的应用

    ATA-3080C功率放大器赋能脉冲气流喷射方法研究

    实验名称: 基于脉冲气流的喷射方法 实验内容: 该技术主要利用控制气流通道的通断状态从而形成周期性的脉冲气流,脉冲气流流入喷射装置内并作用于微通道内的液体,对微通道内的液体产生
    的头像 发表于 08-14 11:06 252次阅读
    ATA-3080C功率放大器赋能脉冲气流<b class='flag-5'>液</b><b class='flag-5'>滴</b>喷射方法研究

    电压放大器驱动微流控芯片关键功能实现研究

    实验名称: 电压放大器在微流控芯片的功能研究中的应用 研究方向: 微流控生物芯片 测试目的: 微流控技术能够在微通道内实现
    的头像 发表于 07-30 14:24 506次阅读
    电压放大器驱动<b class='flag-5'>液</b><b class='flag-5'>滴</b>微流控芯片关键<b class='flag-5'>功能</b>实现研究

    VirtualLab Fusion:平面透镜|从光滑表面到菲涅尔、衍射和超透镜的演变

    摘要 在光学设计中,通常使用两种介质之间的光滑界面来塑造波前。球面和非球面界面用于在成像系统中创建透镜和反射镜。在非成像光学中,自由曲面被用来故意引入特定的像差以塑造光的能量分布。在每种情况下,表面
    发表于 05-15 10:36

    安泰功率放大器在多组分微交流电场下可控融合研究中的应用

    地研究了流速、组分比、表面张力、介电常数和电导率等参数。研究表明,电场条件的调控可以实现不同工况下毫秒级的融合过程,融合区域和反应时间都可以通过施加电压和频率来调节,具有极高的可控性。 研究方向:微
    的头像 发表于 04-16 11:22 517次阅读
    安泰功率放大器在多组分微<b class='flag-5'>液</b><b class='flag-5'>滴</b>交流电场下可控融合研究中的应用

    功率放大器在微流控细胞分选中的应用

    摘要:通过对微的大小和形状进行控制,可以实现对单个细胞的分选。本文综述了国内外在微分选领域的最新研究进展,并介绍了不同类型的功率放大器及其在微流控细胞分选中的应用。基于功率放大
    的头像 发表于 04-03 10:08 597次阅读
    功率放大器在<b class='flag-5'>液</b><b class='flag-5'>滴</b>微流控细胞分选中的应用

    ATA-1372A宽带放大器在超声驱动喷嘴微制备系统中的应用

    。近期,来自上海交通大学机械与动力工程学院的研究团队,就针对上述方向进行了微流控相关研究,该研究成果发表在物理与天体物理领域国际期刊《PHYSICALREVI
    的头像 发表于 03-20 18:48 2188次阅读
    ATA-1372A宽带放大器在超声驱动喷嘴微<b class='flag-5'>液</b><b class='flag-5'>滴</b>制备系统中的应用

    用于微的连续流动洗涤微流控系统

    微流体基于一个由几个已建立的单元操作组成的工具箱,包括生成、培养、混合、微微注射和分选。在过去的二十年里,将这些多单元操作整合到工作流程中的
    的头像 发表于 12-26 15:04 649次阅读

    基于流动聚焦结构的微形成机理

    微流控芯片 又称芯片实验室,指在厘米级的芯片上,由微通道形成网络,使可控流体贯穿整个系统,以实现常规化学或生物学实验室的各种功能,在生物和化学等领域具有良好的应用前景。微通道内的是近年来在微流
    的头像 发表于 12-23 15:29 1060次阅读
    基于流动聚焦结构的微<b class='flag-5'>液</b><b class='flag-5'>滴</b>形成机理

    NOVA无误差微流体

    高通量筛选技术是解开生物学奥秘的关键。然而,微流体在实现单细胞分辨率、超高通量筛查方面的前景在很大程度上仍未实现。由多分散尺寸引起的
    的头像 发表于 12-18 16:28 654次阅读

    深视智能SH6系列高速摄像机观测微流控实验

    01项目背景微流控技术是一种在微尺度条件下对少量流体进行精确且系统地控制的技术,其应用领域广泛,包括医药、化工、材料科学等多个行业。在微流控技术中,的动态行为如生成、运动、融合、分裂等是研究
    的头像 发表于 12-10 16:36 994次阅读
    深视智能SH6系列高速摄像机观测<b class='flag-5'>液</b><b class='flag-5'>滴</b>微流控实验