0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

人工智能的高峰和限制

电子工程师 来源:今日光电 作者:今日光电 2022-08-10 15:00 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

导读

人工智能的迅猛发展和工业界的大量需求是否匹配?新模型新算法天天更新,看似解决了很多问题,但在工业上这些好像并不重要?本文作者将对AI进展是否供过于求给出他的解答。

就我的视角来看,人工智能目前的发展水平,还远远不能达到大部分工业界的需求,有很多工业问题靠目前的技术水平还无法解决。人工智能的发展路线大概是这样的:

a7e62292-17ed-11ed-ba43-dac502259ad0.jpg

图片来源:https://xueqiu.com/1640036587/110614869 当然我个人比较喜欢这张图:

a7fcb28c-17ed-11ed-ba43-dac502259ad0.jpg

图片来源:https://zhuanlan.zhihu.com/p/83018440

人工智能的高峰和限制

可以看到,每当人工智能领域有了新突破后,都会迎来一次发展的高峰。 第一个高峰来源于人工智能概念的确立、以及符号主义算法的发展;第二个高峰来源于感知机、BP 网络、专家系统等理论的提出。然而每个高峰过后,随之而来的就是发展的低谷,这是由于当时的算法,以及配套的算力、商业环境限制所决定的。 目前我们处于人工智能发展的第三个高峰阶段,这次发展的动力来源是深度学习。但是就我目前看来,这一阶段的人工智能高峰,在技术上存在四个比较大的限制:

1. 目前的深度学习还是严重依赖“独立同分布”原则。

虽然有很多学界论文在研究无监督学习,也取得了不错的进展,但工业界目前用的最多的还是有监督学习。一旦最后的应用环境跟手中的样本有明显差异,模型就很容易表现不佳。 这就导致了目前很多算法只能在封闭场景下进行。比如现在很多号称 L4 自动驾驶的应用,实际上只能在一个限定范围内进行,比如园区内的摆渡车、固定路线的出租车等。另外对于一些难以获取数据的场合,由于样本覆盖的空间不够大或覆盖的不够密集,模型的精度也难以保证。

2. 芯片算力有限。

一般来说模型越大,模型效果就越好,但所需算力也就越大。甚至有一种声音:只要模型足够大、算力足够充足、数据足够多,就能训练出真正的人工智能(这么说有点期待量子计算出来,至少解决了算力问题)。但实际上芯片的算力不是无限的,在很多场合下甚至是严重匮乏的,比如手机、车辆等边缘端场景。在这些场景下,算法人员不得不减少模型的大小,以保证模型能以合理的速度运行,但这往往也是伴随着精度的下降的。

3. 深度学习的可解释性不强。

在一些要求非常严苛的领域,没有足够可解释性的技术难以落地。

4. 深度学习的可迁移性仍有提高空间。

在面对一个全新的领域时,还是需要大量的人员与时间投入。这点倒不是因为模型本身没有可迁移性,而是因为各类场景本身的差异较大,在一个新场景下,场景问题的抽象、指标的定义与明确、数据的收集与标注、模型的部署这些往往会耗费大量的人力与时间,训练模型反而是其中比较简单、也比较容易迁移的一环了。 这些限制使得深度学习无法在全领域铺开,只能在一些限定场景下得到很好的应用。

人工智能的发展和工业界的需求

回到题主的问题,题主认为“很多问题其实很多在工业上并不是很重要”其实是正确的,这是因为论文里面关注的问题,都是在深度学习容易铺开的领域内的(人脸识别、目标检测等等)。 而实际工业涉及到的问题领域,远比论文关注的领域大得多得多得多。这些没有得到关注的工业领域,一方面是本身利益场景不大(领域过于细分学术界关注不到,或者是市场没前景,总之钱和命都不太好赚),另外有更多的是这些领域本身不适合深度学习的应用。举个虚拟的例子(编一个故事【逃):

有一天一个工厂甲方找你,说有一个工艺环节人工成本太高了,看看能不能用人工智能代替。你去实地考察后,发现他们现场工人操作全靠经验,规则十分模糊。经过多次调研后,你终于确定了大致的规则,能够对这一个工艺环节以人工智能的方式抽象后,项目终于立项了。 然后你发现数据的收集特别困难(没有电子记录设备,你得驻场抄数据,且没有历史数据,一抄就要抄好久,不然数据不够模型训不了),收集到的数据标注很脏(因为经验不足,有的时候不得不让现场工人标注,因为基本没法定标注规则,数据很脏)。 千辛万苦收集到数据后,训模型倒是很顺利,找个 resnet/bert 训一下,精度有 95%。然后你兴冲冲的找甲方汇报,甲方说我们这没有带显卡的机器,只有一个老旧的 CPU 服务器,让你把模型部署在上面试试看。得,压缩模型吧。经过大量的调优后,模型在 CPU 服务器上速度够了,但精度只能到 90% 了。 用户看看之后觉得可行,然后又提出新需求了:过段时间项目要汇报了,能不能跟省里的专家讲讲你的算法的原理;90% 精度还是太低了,能不能搞到 100%;我们的工艺可能要变一下,你的模型应该能自适应的吧...

这个例子是我从我亲身经历的、听朋友说的多个项目揉起来编的缝合怪,基本上把我前面提到的四个限制全踩了。实际上的项目可能不会踩这么多坑,但是多多少少会踩一部分,而且每个坑都不是省油的灯。 这也是为啥现在很多头部大厂不愿意深入工业领域做深度学习应用的原因:要么就是因为各种因素的限制做不了(比如项目问题无法抽象),要么就是能做性价比太低(需要投入大量人力,项目款项还少,且每个厂子需求都不一样没法复用)。 前面讨论的还仅仅是那些“尝试用人工智能解决”的问题。工业界还有很多问题,工厂压根就没想过用人工智能去解决。所以题主感觉的“解决了很多的问题”,其实在真的是非常小非常小的一部分。

总结

所以回到开头的观点,目前人工智能的发展水平,还只能在一定限定条件下、在一些领域的一部分具体问题上得到很好的应用。在广袤的工业应用场景下,深度学习因为其局限性并不能很好的应用,工业界里面有大量的问题无法用人工智能解决。 其实回顾历史,前两次人工智能高峰,都是因为在一些领域得到突破性的应用后,得到了高度的关注,但也因为人们发现人工智能因为各种因素的限制而不能替代万事万物后,热情而慢慢消退。 此次深度学习引发的人工智能高峰,因其在众多领域取得了突破性的进展而被人们捧上神坛,但我们也不可否认其存在的限制与问题。我没办法预测这次高峰会不会迎来低谷,因为毕竟可能闹不好什么时候又有了理论或工程上的突破。但确定的是,即使人工智能又一次跌入了低谷,但其本身是一直在发展的。只要等到契机的到来,就会有下一个高峰在。在这样跌宕起伏的发展过程中,我们会看到一个个过去无法解决的问题被解决,人们的生活也会因为人工智能的发展越来越便利。这跟科学的发展是何其的相似。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 人工智能
    +关注

    关注

    1813

    文章

    49772

    浏览量

    261708
  • 计算机视觉
    +关注

    关注

    9

    文章

    1714

    浏览量

    47462

原文标题:【光电智造】现在计算机视觉、AI 的发展相比较工业界的需求,是不是供大于求了?

文章出处:【微信号:今日光电,微信公众号:今日光电】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    应用案例 | Enclustra 水星Mercury+ XU1核心板将边缘人工智能送入卫星轨道

    平台相结合,为卫星打造出兼具成本效益与高性能的人工智能计算平台。以实时图像定位这类高要求任务为例,该系统在严格的航天系统限制条件下,成功实现了人工智能模型的机载运行
    的头像 发表于 12-12 08:33 148次阅读
    应用案例 | Enclustra 水星Mercury+ XU1核心板将边缘<b class='flag-5'>人工智能</b>送入卫星轨道

    澎峰科技亮相2025东湖国际人工智能高峰论坛

    今日,以“智引万象,创享未来”为主题的2025东湖国际人工智能高峰论坛在中国光谷科技会展中心成功举办。本次论坛汇聚了多位院士、知名学者与产业领袖,聚焦人工智能前沿技术与产业融合,共同探讨AI驱动下的科研创新与行业变革。
    的头像 发表于 09-20 11:46 1027次阅读

    利用超微型 Neuton ML 模型解锁 SoC 边缘人工智能

    的框架小 10 倍,速度也快 10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍这对开发人员意味着什么,以及使用 Neuton 模型如何改进您的开发和终端
    发表于 08-31 20:54

    人工智能+”,走老路难赚到新钱

    昨天的“人工智能+”刷屏了,这算是官方第一次对“人工智能+”这个名称定性吧?今年年初到现在,涌现出了一大批基于人工智能的创业者,这已经算是AI2.0时代的第三波创业潮了,第一波是基础大模型,第二波
    的头像 发表于 08-27 13:21 538次阅读
    “<b class='flag-5'>人工智能</b>+”,走老路难赚到新钱

    挖到宝了!人工智能综合实验箱,高校新工科的宝藏神器

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:30

    挖到宝了!比邻星人工智能综合实验箱,高校新工科的宝藏神器!

    家人们,最近在研究人工智能相关设备,挖到了一款超厉害的宝藏——比邻星人工智能综合实验箱,必须来给大伙分享分享!可☎(壹捌伍 柒零零玖 壹壹捌陆) 一、开箱即学,便捷拉满 这个实验箱真的是为使用者
    发表于 08-07 14:23

    超小型Neuton机器学习模型, 在任何系统级芯片(SoC)上解锁边缘人工智能应用.

    Neuton 是一家边缘AI 公司,致力于让机器 学习模型更易于使用。它创建的模型比竞争对手的框架小10 倍,速度也快10 倍,甚至可以在最先进的边缘设备上进行人工智能处理。在这篇博文中,我们将介绍
    发表于 07-31 11:38

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能

    迅为RK3588开发板Linux安卓麒麟瑞芯微国产工业AI人工智能
    发表于 07-14 11:23

    最新人工智能硬件培训AI 基础入门学习课程参考2025版(大模型篇)

    人工智能大模型重塑教育与社会发展的当下,无论是探索未来职业方向,还是更新技术储备,掌握大模型知识都已成为新时代的必修课。从职场上辅助工作的智能助手,到课堂用于学术研究的智能工具,大模型正在工作生活
    发表于 07-04 11:10

    中科创达亮相SGS人工智能治理高峰论坛

    今日,在由国际公认的测试、检验和认证机构 SGS 举办的人工智能治理高峰论坛上,中科创达正式获颁ISO/SAE 21434汽车网络安全管理体系认证证书。中科创达副总裁杨新辉上台接受了这份极具分量的认证证书。
    的头像 发表于 05-30 09:49 878次阅读

    开售RK3576 高性能人工智能主板

    ,HDMI-4K 输出,支 持千兆以太网,WiFi,USB 扩展/重力感应/RS232/RS485/IO 扩展/I2C 扩展/MIPI 摄像头/红外遥控 器等功能,丰富的接口,一个全新八核拥有超强性能的人工智能
    发表于 04-23 10:55

    AI人工智能隐私保护怎么样

    在当今科技飞速发展的时代,AI人工智能已经深入到我们生活的方方面面,从医疗诊断到交通调度,从教育辅助到娱乐互动,其影响力无处不在。然而,随着AI人工智能的广泛应用,其安全性问题也备受关注。那么,AI
    的头像 发表于 03-11 09:46 971次阅读
    AI<b class='flag-5'>人工智能</b>隐私保护怎么样

    DeepSeek对人工智能领域的启示

    本文作者是 IBM 董事长兼首席执行官 Arvind Krishna。他认为,社会各界不应止步于应用人工智能,更要成为人工智能的共建者。
    的头像 发表于 02-07 09:46 1453次阅读

    人工智能和机器学习以及Edge AI的概念与应用

    作者:DigiKey Editor 人工智能(AI)已经是当前科技业最热门的话题,且其应用面涉及人类生活的各个领域,对于各个产业都带来相当重要的影响,且即将改变人类未来发展的方方面面。本文将为您介绍
    的头像 发表于 01-25 17:37 1595次阅读
    <b class='flag-5'>人工智能</b>和机器学习以及Edge AI的概念与应用

    人工智能推理及神经处理的未来

    人工智能行业所围绕的是一个受技术进步、社会需求和监管政策影响的动态环境。机器学习、自然语言处理和计算机视觉方面的技术进步,加速了人工智能的发展和应用。包括医疗保健、金融和制造业在内的各个行业对自动化
    的头像 发表于 12-23 11:18 876次阅读
    <b class='flag-5'>人工智能</b>推理及神经处理的未来