0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

拆解|QR架构、功率密度0.91W/cm³的国产30W 氮化镓快充

海明观察 来源:电子发烧友网 作者:李诚 2022-07-30 08:45 次阅读
电子发烧友网报道(文/李诚)随着电子设备充电功率的不断提高,具有耐高温 、高压、高开关频率的氮化镓,在消费类快充领域进入了发展的快车道。氮化镓不仅能够替代传统硅基器件降低导通电阻,还能够实现更高的开关频率,减小变压的尺寸,助力充电器的小型化设计。
近日,笔者拆解了一款倍思的30W氮化镓快充,并针对产品设计、用料、工作原理以及电源架构进行了分析,具体内容见下文。
设计与基本参数
此款氮化镓充电器的最高输出功率为30W,它主要是针对iPhone用户消费群体推出的。顶部为单Type-C的功率输出接口,并且为了提升产品的便携性,充电器底部采用了可折叠式插脚的设计,减小收纳体积。
该充电器支持100V~240V宽压输入,以及5V/3A、9V/5A、12V/2.5A、15V/2A、20V/1.5A多功率等级的输出,并兼容PD、QC、PPS等多制式快充协议,具体尺寸为:长3cm*宽2.85cm*高3.85cm(测量结果可能存在1mm误差),以最高输出功率30W计算,充电器的功率密度可达到0.91W/cm3,在同行业产品中属于中等水平。
充电器的内部采用的是U型拼接的设计,主要是为了将空间利用率实现最大化,提高充电器的功率密度。U型的拼接设计,也是目前行业内为提升功率密度,运用得较为广泛的一种设计。
为了避免初、次级电路耦合,此款充电器还巧妙地使用了黑色塑料块对初、次级电路器件固定,同时完成二者之间的电气隔离。
工作原理解析
电流会先从电源的正极流入耐压值为250V的保险电阻,再流向共模电感、工字型电感,消除共模干扰、滤波,使通过的电流更加稳定。经过消除共模干扰后的电流会流入板子背面一体化封装的整流管,将与市电连接的交流电转化为直流电,再经过两颗高压电容滤波后流向变压器。
电流从原边流向副边需要主控芯片与开关管的配合。此时,充电器的主控芯片会通过控制开关管的导通与关断,在变压器原边形成不断变化的电流,经过变压器降压后流向副边。由于变压器副边输出的还是是交流电,需要经过整流滤波后方可向手机输出。
电源架构及主要元器件

通过观察电路得知,此款充电器采用了经典的QR开关电源架构设计。电路中没有看到主控电路的开关管是因为,主控芯片是一颗与氮化镓开关管合封的南芯SC3056高频准谐振反激PWM转换器,在QR工作模式下,可支持最高170kHz开关频率。
通过采用合封芯片不仅消除了寄生参数对高频开关造成的干扰,简化了外围电路器件的使用,还有利于功率密度的提高。
上图分别为充电器输入端和输出端的滤波电容,输入端分别为一颗永明电子的33μF电容和一颗创宜兴科技的22μF电容,这两颗电容的耐压值选型均为400V,这主要是为了提高充电器的可靠性,避免电压波动造成电容的击穿。当充电器接入220V市电经过滤波、整流后,电压会升高至311V,如果电压源存在波动的话,滤波、整流后的电压会更高。
上图为次级端电路,主要有同步整流控制器、同步整流管、协议识别芯片和VBUS开关构成。同步整流控制器为南芯的SC3503,与并排的华瑞微HRG100N068GL开关管,构成一套同步整流电路,下方为一颗南芯的SC2151A协议识别芯片。板子背面是一颗华瑞微HRT30N08J开关管,这颗开关管位于VBUS输出电路上,做VBUS开关使用。
在初级侧的小板上有一颗用于电路反馈的光电耦合器OR1009。实际上,它介于初级侧与次级侧之间,其主要是在次级协议芯片与充电设备完成协议识别后,将所需的电压信息反馈给初级侧的主控芯片,通过调整开关管的占空比来改变输出端的电压。
总结
这款倍思的30W氮化镓快充,在做工方面还是相当精细的,元器件之间摆放位置的契合度也非常之高,将空间的利用率实现了最大化,可见开发工程师在器件布局方面花了不少心思。在元器件选择方面,这款充电器的电路中一共使用到了3颗开关管,不过只在初级侧使用了氮化镓,同步整流以及VBUS开关依然还是传统的硅基器件,并没有实现全氮化镓。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 氮化镓
    +关注

    关注

    53

    文章

    1490

    浏览量

    114832
  • 快充技术
    +关注

    关注

    39

    文章

    427

    浏览量

    138301
收藏 人收藏

    评论

    相关推荐

    30W单激PFC计算公式

    30W单激PFC计算
    发表于 09-28 07:19

    基于VIPerGaN50和STUSB4761的45W QR USB PD适配器参考设计

    氮化(GaN)- 宽带隙(WBG)材料• GaN HEMT-高电子迁移率晶体管,代表着电力电子技术的重大进步• 用于更高的工作频率• 提高效率• 与硅基晶体管相比,功率密度更高
    发表于 09-07 07:43

    有关氮化半导体的常见错误观念

    功率密度计算解决方案实现高功率密度和高效率。 误解2:氮化技术不可靠 氮化器件自2010年初
    发表于 06-25 14:17

    GaN功率IC实现4倍功率密度150W AC/DC转换器设计

    GaN功率IC使能4倍功率密度150W AC/DC变换器设计
    发表于 06-21 07:35

    基于氮化IC的150W高效率高功率密度适配器设计

    高频150W PFC-LLC与GaN功率ic(氮化)
    发表于 06-19 08:36

    拆解报告:橙果65W 2C1A氮化充电器

    支持65W,并可支持三台设备同时充电,相当实用。下面就带来这款充电器的拆解,看看内部的用料和做工。 橙果65W
    发表于 06-16 14:05

    什么是氮化功率芯片?

    通过SMT封装,GaNFast™ 氮化功率芯片实现氮化器件、驱动、控制和保护集成。这些GaNFast™
    发表于 06-15 16:03

    为什么氮化比硅更好?

    ,在半桥拓扑结构中结合了频率、密度和效率优势。如有源钳位反激式、图腾柱PFC和LLC。随着从硬开关拓扑结构到软开关拓扑结构的改变,初级FET的一般损耗方程可以最小化,从而提升至10倍的高频率。 氮化
    发表于 06-15 15:53

    为什么氮化(GaN)很重要?

    的设计和集成度,已经被证明可以成为充当下一代功率半导体,其碳足迹比传统的硅基器件要低10倍。据估计,如果全球采用硅芯片器件的数据中心,都升级为使用氮化功率芯片器件,那全球的数据中心将
    发表于 06-15 15:47

    氮化功率芯片如何在高频下实现更高的效率?

    桥式拓扑结构中放大了氮化的频率、密度和效率优势,如主动有源钳位反激式(ACF)、图腾柱PFC 和 LLC(CrCM 工作模式)。随着硬开关拓扑结构向软开关拓扑结构的转变,初级 FET 的一般损耗方程可以被最小化。更新后的简单方
    发表于 06-15 15:35

    氮化功率芯片的优势

    更小:GaNFast™ 功率芯片,可实现比传统硅器件芯片 3 倍的充电速度,其尺寸和重量只有前者的一半,并且在能量节约方面,它最高能节约 40% 的能量。 更快:氮化电源 IC 的集成设计使其非常
    发表于 06-15 15:32

    谁发明了氮化功率芯片?

    ,是氮化功率芯片发展的关键人物。 首席技术官 Dan Kinzer在他长达 30 年的职业生涯中,长期担任副总裁及更高级别的管理职位,并领导研发工作。他在硅、碳化硅(SiC)和
    发表于 06-15 15:28

    什么是氮化功率芯片?

    氮化(GaN)功率芯片,将多种电力电子器件整合到一个氮化芯片上,能有效提高产品充电速度、效率、可靠性和成本效益。在很多案例中,
    发表于 06-15 14:17

    拆解:魅族PANDAER 67W氮化变速箱潮采用智融SW3516P/SW2325!性能强悍!

    今年3月底魅族的新品发布会发布了PANDAER 67W GaN变速箱潮,其采用与上一代相同的透明变速箱设计语言,最大输出功率则由65W提升至67W
    发表于 05-30 11:27

    A+C双口全协议同步降压芯片SW3562

    SW3562了支持140W输出的协议芯片,分别是支持1A+1C接口,两款芯片均支持私有协议,满足20V7A,140
    发表于 05-25 14:26