0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

增强PEO基固态聚合物电解质锂离子传输效率提升锂金属电池循环稳定性

锂电联盟会长 来源:锂电联盟会长 作者:锂电联盟会长 2022-07-26 15:38 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

研 究 背 景

锂(Li)金属密度为0.53 g cm-3,电化学电势很低(相对于标准氢电极为-3.04 V),作为二次电池负极的理论比容量为3860 mAh g-1,是高能量密度电池最有潜力的负极材料之一。但在通常二次电池中,由于液体电解质泄漏、易挥发、易燃性和易爆炸等问题极大制约着锂金属负极的实际应用。固态电解质是解决非水电解质安全性问题和提高电池系统能量密度的理想选择。 聚环氧乙烷(PEO)基聚合物电解质因其成本低、合成工艺简单、与锂金属负极具有良好的化学相容性和机械柔性而备受关注。然而,PEO基聚合物电解质室温条件下锂离子传输缓慢,产生巨大的传质极化,导致电池性能严重衰减。因此增强室温条件下锂离子的传输能力是实现PEO基聚合物电解质应用的关键。

文 章 简 介

a1f222d6-0687-11ed-ba43-dac502259ad0.png

图1 复合PLFS聚合物电解质制备示意图 基于此,来自厦门大学孙世刚院士团队,在国际知名期刊Journal of Materials Chemistry A上发表题为“Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batteries”的文章。 该工作通过将LLZTO/FEC/SN与PEO复合,制备了PEO-LLZTO-FEC-SN (PLFS)聚合物复合电解质,室温条件下展现出快速的锂离子传输能力,显著改善了电池的循环寿命和倍率性能,组装的Li/PLFS/LFP电池在1C倍率及25℃条件下实现了超过700周充放电稳定循环。文章还运用红外光谱、拉曼光谱以及拟合Arrhenius等方法对锂离子的传输机理进行了深入研究。复合PLFS聚合物电解质制备示意图如图1所示。

本 文 要 点

一、LLZTO/FEC/SN 加入后对锂离子传输的影响锂离子传输活化能可以通过以下公式求算:

a201db7c-0687-11ed-ba43-dac502259ad0.jpg

其中A是与电荷载流子数成正比的常数,Ea是Li+传输活化能,R是理想气体常数。从图1a和1b两图可以看出,随着LLZTO/FEC与SN的加入,锂离子传输活化能由1.03 eV降低至0.55 eV,有利于促进锂离子快速传输。从c和d两图可以看出,复合后电解质的离子电导率和Li+电流分量明显提升,复合后的电解质Li+传输效率(离子电导率和Li+电流分量的乘积)提升了超过40倍。

a211bbfa-0687-11ed-ba43-dac502259ad0.png

图2a)各SPE的Arrhenius方程拟合曲线,b)各SPE的Li+传输活化能。c)各SPE的离子电导率和Li+电流分数。c)各SPE在25°C下的Li+转移效率(PEO-SPEs的数据归一化为1.0) 二、LLZTO/FEC与SN加入后对锂离子传输方式的影响

a21dff14-0687-11ed-ba43-dac502259ad0.png

图3 a)FEC,LLZTO-pure,LLZTO-air和热处理后LLZTO-air-FEC的ATR-FTIR光谱。b,c)LLZTO/FEC共混加热处理前后锂离子传输示意图。d)PEO/PEO-SN/PLFS聚合物电解质Raman光谱。e)PEO与SN电子给体数对比。 LLZTO接触空气时,容易发生Li/H交换,在表面生成一层Li2CO3钝化层。该钝化层阻碍锂离子的局部传输,抑制锂离子的跨相传输。该钝化层可以借助FEC共混加热处理消除,FEC与Li2CO3反应过程红外光谱测试结果如图3a所示。原始LLZTO表面有微弱的Li2CO3信号(1410和860 cm-1),而当放置在空气当中一段时间后,Li2CO3的红外峰明显增强,表明此时LLZTO表面有大量的Li2CO3生成。而在与FEC混合加热之后,Li2CO3的红外峰强明显减弱,对应于Li2CO3的分解消除,促进锂离子的局部传输,如图3b和3c所示。 借助拉曼光谱探究了SN加入后Li+的配位结构的变化。可以看出,原始PEO位于2253 cm-1处具有微弱的信号,对应于制备过程中乙腈溶剂的残留。加入SN后,2253 cm-1处的拉曼信号显著增强,同时在2280处出现了新的拉曼信号,对应于-CN与Li+的相互作用,表明SN的加入可以参与到Li+的配位结构中。同时由于SN的Gutmann电子给体数较低,与锂离子的相互作用弱,促使形成了弱相互作用的Li+配位结构。这有利于促进与Li+与PEO链段的解络合,降低Li+传输能垒,从而改善Li+的传输。 三、室温条件下Li/PLFS/LFP电池倍率/循环性能测试

a22fc884-0687-11ed-ba43-dac502259ad0.png

图4 a)Li/PLFS/LFP电池在0.5°C下的长循环测试,插图显示了相应的电压-容量曲线。b)Li/PLFS/LFP电池在各种电流密度下的倍率能力,以及相应的充电/放电曲线。d)Li/PLFS/LFP电池在1°C下的循环稳定性以及相应的电压-容量曲线。e)在25°C和50°C下与文献数据电化学性能比较。 在25℃条件下组装了Li/PLFS/LFP电池,并进行了长循环和倍率性能测试。图4c 为Li/PLFS/LFP电池的倍率性能测试,在0.1,0.2,0.3,0.5,1 和2 C条件下分别展现出149.6, 145.2, 141.0, 133.1, 106.6, and 71.1 mAh g-1的比容量。而后我们进行长循环测试。图4a为0.5 C长循环测试, 初始放电容量131.6 mAh g-1,400次充放电循环后,仍给出127.8 mAh g-1的高容量,显示优异的循环稳定性。 进而提高测试倍率至1C,并拓展截止电压至2.5 ~ 4.25 V,从图4d可以看出,组装的Li/PLFS/LFP可以稳定循环超过700周,并保持了接近80%的初始容量。与其他PEO基电解质相比,无论是在室温(25°C)还是高温(50°C),本研究设计制备的PLFS的循环能力均处于最高水平(图4e)。

文 章 链 接

Enhancing Li ion transfer efficacy in PEO-based solid polymer electrolytes to promote cycling stability of Li-metal batterieshttps://pubs.rsc.org/en/Content/ArticleLanding/2022/TA/D2TA03283J

通 讯 作 者 简 介

孙世刚教授简介:中国科学院院士,厦门大学教授,中国化学会副理事长。 1982年毕业于厦门大学化学系,1986年在法国巴黎居里大学获国家博士学位。长期从事电化学、表界面科学和电化学能源研究。曾获国际电化学会Brian Conway奖章、中国电化学贡献奖、教育部自然科学一等奖、国家自然科学二等奖等。以通讯作者在Science, J Am Chem Soc, Angew Chem Int Ed等期刊发表论文700余篇。

第 一 作 者 简 介

宋存,厦门大学2019级化学工程专业硕士研究生。 导师为孙世刚教授

课 题 组 介 绍

厦门大学化学化工学院孙世刚教授团队主要从事电催化、谱学电化学和和能源电化学等研究,侧重原子排列层次的表面结构与性能,以及分子水平反应机理和反应动力学。研究体系包括:1、铂、钯、铑等金属单晶电极的电催化性能; 2、运用电化学原位红外反射光谱等从分子水平研究电催化反应机理;3、高指数晶面/高表面能金属纳米催化剂的电化学控制合成及性能研究;4、锂/钠离子电池电极材料的结构和性能调控;5、燃料电池非贵金属催化剂,及生物电化学过程和机理研究。 迄今已在包括Science, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Chem. Soc. Rev., Acc. Chem. Res.等学术刊物上发表SCI论文700余篇,被他引3万多次。“电催化的表面结构效应、设计合成和反应机理研究”成果获2013年度国家自然科学奖二等奖。

审核编辑 :李倩

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 锂离子
    +关注

    关注

    5

    文章

    571

    浏览量

    39548
  • 电解质
    +关注

    关注

    6

    文章

    828

    浏览量

    21249
  • 锂金属电池
    +关注

    关注

    0

    文章

    147

    浏览量

    4907

原文标题:孙世刚院士团队,JMCA:增强PEO基固态聚合物电解质锂离子传输效率提升锂金属电池循环稳定性

文章出处:【微信号:Recycle-Li-Battery,微信公众号:锂电联盟会长】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    专业解读:多孔碲技术如何提升石榴石固态金属电池性能

    采用固体氧化电解质金属电池因其克服传统锂离子电池(LIBs)安全性和能量密度限制的潜力而备
    的头像 发表于 12-16 18:04 47次阅读
    专业解读:多孔碲技术如何<b class='flag-5'>提升</b>石榴石<b class='flag-5'>固态</b><b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>性能

    金属电池稳定性能:解决固态电池界面失效的新策略

    固态电池因其高能量密度和增强的安全性而备受关注。然而,固体电解质层与电极之间形成的空隙,已成为制约其长期稳定运行的关键障碍。如今,研究人员通
    的头像 发表于 10-23 18:02 1391次阅读
    <b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b><b class='flag-5'>稳定性</b>能:解决<b class='flag-5'>固态</b><b class='flag-5'>电池</b>界面失效的新策略

    突破性固态聚合物电解质:像拼图一样组装分子,打造安全高压锂电池

    【美能锂电】观察:为高比能金属电池开发安全且耐高压的固态聚合物电解质,是当前
    的头像 发表于 09-30 18:04 2678次阅读
    突破性<b class='flag-5'>固态</b><b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>:像拼图一样组装分子,打造安全高压锂<b class='flag-5'>电池</b>

    锂离子电池电解质填充工艺:技术原理与创新实践

    锂离子电池的全生命周期中,电解质填充工艺的技术精度直接关联电池的能量密度、循环稳定性与安全性。美能锂电作为新能源制造领域的创新引领者,始终
    的头像 发表于 08-11 14:53 672次阅读
    <b class='flag-5'>锂离子电池</b><b class='flag-5'>电解质</b>填充工艺:技术原理与创新实践

    钽元素赋能LLZO固态电解质,破解氧化固态电池产业化密码

    电子发烧友网综合报道 在全球能源转型的浪潮中,固态电池技术被视为突破传统锂离子电池能量密度与安全性瓶颈的关键所在。氧化固态
    的头像 发表于 05-26 09:29 8304次阅读

    钽元素赋能LLZO固态电解质,破解氧化固态电池产业化密码

    电子发烧友网综合报道 在全球能源转型的浪潮中,固态电池技术被视为突破传统锂离子电池能量密度与安全性瓶颈的关键所在。氧化固态
    发表于 05-26 07:40 2037次阅读

    超声波焊接有利于解决固态电池的枝晶问题

    电池(SSLMBs)作为一种极具潜力的储能技术,由于其固有的高安全性和实现高能量密度的潜力备受关注。然而,其实际应用受制于严峻的界面问题,主要表现为固态电解质
    发表于 02-15 15:08

    清华大学:自由空间对硫化固态电解质表面及内部裂纹处沉积行为的影响

    清华新闻网2月7日电 硫化固态电解质Li5.5PS4.5Cl1.5具有锂离子电导率高(≈10 mS/cm)、机械加工性能优异、与金属
    的头像 发表于 02-14 14:49 761次阅读
    清华大学:自由空间对硫化<b class='flag-5'>物</b><b class='flag-5'>固态</b><b class='flag-5'>电解质</b>表面及内部裂纹处<b class='flag-5'>锂</b>沉积行为的影响

    研究论文::乙烯碳酸酯助力聚合物电解质升级,提升高电压金属电池性能

    1、 导读 >>     该研究探讨了乙烯碳酸酯(VC)添加剂在聚丙烯酸酯(PEA)固态聚合物电解质中的作用。结果表明,VC添加剂显著提升
    的头像 发表于 01-15 10:49 1328次阅读
    研究论文::乙烯碳酸酯助力<b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>升级,<b class='flag-5'>提升</b>高电压<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>性能

    斯坦福大学鲍哲南/崔屹PNAS:高性能金属电池用单氟电解质

    循环,平均库仑效率必须达到99.99%。目前,高度氟化的醚类电解质虽然能提高稳定性,但存在离子传输
    的头像 发表于 01-14 13:53 1072次阅读
    斯坦福大学鲍哲南/崔屹PNAS:高性能<b class='flag-5'>锂</b><b class='flag-5'>金属</b><b class='flag-5'>电池</b>用单氟<b class='flag-5'>电解质</b>

    固态电池最新突破

    兼容性的固态电解质(SSEs)具有重要意义。 SSEs主要分为固态聚合物电解质(SPEs)和固态
    的头像 发表于 01-14 11:15 1419次阅读
    <b class='flag-5'>固态</b>锂<b class='flag-5'>电池</b>最新突破

    清华深研院刘思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化复合固态电解质

    复合固态电解质及其全固态锂离子电池的应用,并被评选为正封面(front cover)文章。     本文综述了硫化
    的头像 发表于 01-07 09:15 999次阅读
    清华深研院刘思捷/港科大Kristiaan Neyts最新AEM封面文章:硫化<b class='flag-5'>物</b>复合<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>

    陈军院士团队最新Angew,聚合物电解质新突破

    际应用潜力。凝胶聚合物电解质(GPEs)兼具高机械性能和优异的电化学性能具备广阔的产业化前景。然而,传统的纳米填料添加策略往往由于填料分布不均匀和微域结构不一致,导致离子迁移效率降低,
    的头像 发表于 01-06 09:45 2124次阅读
    陈军院士团队最新Angew,<b class='flag-5'>聚合物</b><b class='flag-5'>电解质</b>新突破

    Li3MX6全固态锂离子电池固体电解质材料

        研究背景 Li3MX6族卤化(M = Y、In、Sc等,X =卤素)是新兴的全固态锂离子电池固体电解质材料。与现有的硫化固体
    的头像 发表于 01-02 11:52 1839次阅读
    Li3MX6全<b class='flag-5'>固态</b><b class='flag-5'>锂离子电池</b>固体<b class='flag-5'>电解质</b>材料

    一种薄型层状固态电解质的设计策略

    研 究 背 景 用固态电解质(SSE)代替有机电解液已被证明是克服高能量密度金属电池安全性问题
    的头像 发表于 12-31 11:21 1533次阅读
    一种薄型层状<b class='flag-5'>固态</b><b class='flag-5'>电解质</b>的设计策略