0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

采用NVIDIA GPU加速HPC应用性能提升

NVIDIA英伟达企业解决方案 来源:NVIDIA英伟达企业解决方案 作者:NVIDIA英伟达企业解 2022-06-08 10:57 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

本文作者:

Ashraf EassaNVIDIA 加速计算部门高级产品营销经理

Chris PorterNVIDIA HPC & AI 高级技术营销经理

高性能计算(HPC)已经成为必不可少的科学研究工具。

无论是研发出拯救生命的新药,还是抵御气候变化,或是精确模拟我们的世界,这些解决方案都需要强大的处理能力,而且这一需求正在快速增长,日益超出传统计算方法能够应对的范畴。

因此,业界纷纷采用 NVIDIA 的 GPU 进行加速计算。结合 AI,它能带来数百万倍的性能加速,推动科学的进步。如今,已有 2700 个应用受益于 NVIDIA GPU 加速,而在日益增长的 300 万开发者共同组成的社区支持下,这一数字仍在不断攀升。

HPC 应用性能提升

为将所有 HPC 应用的速度提升数倍,我们需要在堆栈的每个层面进行不断的创新,包括芯片、系统以及应用框架本身。

随着架构和 NVIDIA 软件栈整体上的不断进步, NVIDIA 平台的性能每年都会显著提高。与六年前发布的 P100 相比, H100 Tensor Core GPU 的性能提高 26 倍,比摩尔定律快 3 倍以上。

NVIDIA 平台的核心是一个功能丰富的高性能软件堆栈。为了方便各种 HPC 应用实现 GPU 加速,该平台加入了 NVIDIA HPC SDK。SDK 使开发者能够使用标准语言、导语指令以及 CUDA 来编写和移植 GPU 加速应用,为开发者带来了无与伦比的灵活性。

NVIDIA HPC SDK 的强大之处在于其庞大且高度优化的 GPU 加速数学库,使用户能够充分发挥 NVIDIA GPU 的性能潜力。为了实现最佳的多 GPU 和多节点扩展性能, NVIDIA HPC SDK 还提供强大的通信库:

NVSHMEM 为跨多个 GPU 内存的数据创建了一个全局地址空间。

NVIDIA 集合通信库(NCCL)优化了 GPU 之间的通信。

总之,该平台提供最高的性能和灵活性,为庞大的、不断增长的 GPU 加速 HPC 应用提供支持。

HPC 的性能和能效

为了展示 NVIDIA 全栈创新如何助力加速 HPC 实现最高性能, 我们将一台配备 4 颗 NVIDIA GPU 的慧与(HPE)服务器与一台配备另一家厂商同等数量加速器模块且配置相似的服务器进行了性能比较。

我们使用多种算例测试了广泛使用的五个 HPC 应用。尽管在各个行业中有约 2700 个应用基于 NVIDIA 平台实现了加速,但由于另一家厂商的加速器只支持部分软件和应用版本,我们在此次比较中所能使用的应用有限。

对于除 NAMD (用于分子动力学模拟的软件)以外的所有应用,我们首先获得多个算例的结果,然后使用它们的几何平均值作为计算结果,这样可以将异常值的影响最小化并反映客户的体验。

我们还在多 GPU 和单 GPU 场景下测试了这些应用。

在多 GPU 场景中,测试系统中的所有加速器都被用来运行一个模拟,基于 A100 Tensor Core GPU 的服务器所提供的性能比起另一台服务器高出 2.1 倍。

得益于计算性能的持续进步,分子动力学领域正朝着模拟更大的原子体系和更长的时间的方向发展。这使研究者能够模拟越来越多的生物化学机制,例如光合电子传递和视觉信号转导。对于此类过程,由于模拟这一主要验证方式耗时过长,之前无法通过模拟来对其进行验证,导致这类过程也一直引发科学界的争论。

但我们认识到,并非所有用户都会在每次模拟时使用多个 GPU 运行。为了获得最佳吞吐量,最好的方法往往是为每次模拟分配一个 GPU。

当在单一加速器模块( NVIDIA A100 上一个的完整 GPU 和另一款产品上的两个计算芯片)上运行这些应用时,基于 NVIDIA A100 的系统提供了高达 1.9 倍的性能。

电力成本占据了数据中心和超级计算中心总拥有成本(TCO)中的很大一部分,这突出了高能效计算平台的重要性。根据我们的测试, NVIDIA 平台的每瓦吞吐量比其他产品高 2.8 倍。

多年来, 我们为了最大限度地提高应用性能和效率而坚持不懈地进行软硬件协同优化,最终打造出具有卓越性能和能效的 NVIDIA A100 GPU。欲进一步了解 NVIDIA Ampere 架构,请参见 NVIDIA A100 Tensor Core GPU 白皮书。

A100 在操作系统中也表现为一个单一的处理器,只需要启动一个 MPI 线程就可以充分发挥它的性能。而且由于一个节点中所有 GPU 之间都采用 600-GB/s NVLink 互联,因此 A100 可以提供出色的扩展性能。

AI 与 HPC 的融合

正如加速计算将模拟和仿真应用的速度提高了数倍, AI 和 HPC 的结合也将进一步提升性能,推动下一波科学研究的发展。

从我们首次提交 MLPerf 训练结果到最近一次提交,已有三年的时间。在这三年里, NVIDIA 平台在这套由同行评审的行业标准基准测试中将深度学习性能提高了 20 倍。这些成果来自于芯片、软件和规模上的全面提高。

科学家和研究者已在使用 AI 大幅提升性能,加快科学研究的速度。

使识别引力波所需的时间减少为原来 10 万分之一。

对呼吸道飞沫中的 Delta SARS-CoV-2 病毒(原子数超过 10 亿)进行模拟的速度提高 1000 倍。

加速清洁聚变能源的发展。

为余热锅炉(HRSG)工厂创建预测性数字孪生。

世界各地的超级计算中心都在持续使用加速 AI 超级计算机。

阿贡领导力计算设施(ALCF)的 Polaris 超级计算机、美国国家能源研究科学计算中心(NERSC)的 Perlmutter、意大利多所大学组建的 CINECA 联盟建设的 Leonardo,均采用 A100 Tensor Core GPU 加速。

即将在 2023 年上线的 Alps 超级计算机基于 NVIDIA 的 Grace Hopper 超级芯片打造而成。

计划于 2023 年交付的洛斯阿拉莫斯国家实验室的 Venado 系统,将包含 Grace Hopper 超级芯片以及 Grace CPU 超级芯片节点。

原文标题:NVIDIA 通过全栈创新推动高性能计算的发展

文章出处:【微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

审核编辑:汤梓红
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • NVIDIA
    +关注

    关注

    14

    文章

    5496

    浏览量

    109087
  • HPC
    HPC
    +关注

    关注

    0

    文章

    342

    浏览量

    24825
  • 高性能计算
    +关注

    关注

    0

    文章

    95

    浏览量

    13761

原文标题:NVIDIA 通过全栈创新推动高性能计算的发展

文章出处:【微信号:NVIDIA-Enterprise,微信公众号:NVIDIA英伟达企业解决方案】欢迎添加关注!文章转载请注明出处。

收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    NVIDIA RTX PRO 2000 Blackwell GPU性能测试

    越来越多的应用正在使用 AI 加速,而无论工作站的大小或形态如何,都有越来越多的用户需要 AI 性能NVIDIA RTX PRO 2000 Blackwell 是全新 NVIDIA
    的头像 发表于 11-28 09:39 3629次阅读
    <b class='flag-5'>NVIDIA</b> RTX PRO 2000 Blackwell <b class='flag-5'>GPU</b><b class='flag-5'>性能</b>测试

    NVIDIA推出NVQLink高速互连架构

    NVIDIA 推出 NVIDIA NVQLink,这是一种开放式系统架构,可将 GPU 计算的极致性能与量子处理器紧密结合,以构建加速的量子
    的头像 发表于 11-03 14:53 479次阅读

    Lambda采用Supermicro NVIDIA Blackwell GPU服务器集群构建人工智能工厂

    大批量 Supermicro GPU 优化服务器(包括基于 NVIDIA Blackwell 的系统),以扩展其人工智能基础设施并向客户交付高性能计算系统。此次合作于今年 6 月率先在俄亥俄州哥伦布市的 Cologix COL4
    的头像 发表于 08-30 16:55 620次阅读

    NVIDIA RTX PRO 4500 Blackwell GPU测试分析

    今天我们带来全新 NVIDIA Blackwell 架构 GPU —— NVIDIA RTX PRO 4500 Blackwell 的测试,对比上一代产品 NVIDIA RTX 450
    的头像 发表于 08-28 11:02 2869次阅读
    <b class='flag-5'>NVIDIA</b> RTX PRO 4500 Blackwell <b class='flag-5'>GPU</b>测试分析

    NVIDIA桌面GPU系列扩展新产品

    NVIDIA 桌面 GPU 系列扩展,推出 NVIDIA RTX PRO 4000 SFF Edition GPU 和 RTX PRO 2000 Blackwell
    的头像 发表于 08-18 11:50 995次阅读

    NVIDIA Blackwell GPU优化DeepSeek-R1性能 打破DeepSeek-R1在最小延迟场景中的性能纪录

    本文将探讨 NVIDIA TensorRT-LLM 如何基于 8 个 NVIDIA Blackwell GPU 的配置,打破 DeepSeek-R1 在最小延迟场景中的性能纪录:在 G
    的头像 发表于 07-02 19:31 2937次阅读
    <b class='flag-5'>NVIDIA</b> Blackwell <b class='flag-5'>GPU</b>优化DeepSeek-R1<b class='flag-5'>性能</b> 打破DeepSeek-R1在最小延迟场景中的<b class='flag-5'>性能</b>纪录

    NVIDIA虚拟GPU 18.0版本的亮点

    NVIDIA 虚拟 GPU(vGPU)技术可在虚拟桌面基础设施(VDI)中解锁 AI 功能,使其比以往更加强大、用途更加广泛。vGPU 通过为各种虚拟化环境中的 AI 驱动工作负载提供动力,提高了
    的头像 发表于 04-07 11:28 1129次阅读

    使用NVIDIA RTX PRO Blackwell系列GPU加速AI开发

    NVIDIA GTC 推出新一代专业级 GPU 和 AI 赋能的开发者工具—同时,ChatRTX 更新现已支持 NVIDIA NIM,RTX Remix 正式结束测试阶段,本月的 NVIDIA
    的头像 发表于 03-28 09:59 1071次阅读

    使用NVIDIA CUDA-X库加速科学和工程发展

    NVIDIA GTC 全球 AI 大会上宣布,开发者现在可以通过 CUDA-X 与新一代超级芯片架构的协同,实现 CPU 和 GPU 资源间深度自动化整合与调度,相较于传统加速计算架构,该技术可使计算工程工具运行速度
    的头像 发表于 03-25 15:11 1204次阅读

    英伟达GTC2025亮点:NVIDIA Blackwell加速计算机辅助工程软件,实现实时数字孪生性能数量级提升

    、Altair、Cadence、Siemens 和 Synopsys 等在内的领先计算机辅助工程(CAE)软件供应商正在使用 NVIDIA Blackwell 平台加速其仿真工具,速度提升高达 50 倍
    的头像 发表于 03-21 15:12 1251次阅读

    超级计算与 HPC 之间的界限日趋模糊

    难以区分,这推动了商业和科学应用性能的巨大提升,也给两者带来了类似的挑战。虽然超级计算和高性能计算(HPC)的目标一直很相似(超快处理速度),但它们所服务的市场却截
    的头像 发表于 03-17 10:33 833次阅读
    超级计算与 <b class='flag-5'>HPC</b> 之间的界限日趋模糊

    GPU加速计算平台的优势

    传统的CPU虽然在日常计算任务中表现出色,但在面对大规模并行计算需求时,其性能往往捉襟见肘。而GPU加速计算平台凭借其独特的优势,吸引了行业内人士的广泛关注和应用。下面,AI部落小编为大家分享
    的头像 发表于 02-23 16:16 757次阅读

    利用NVIDIA DPF引领DPU加速云计算的未来

    越来越多的企业开始采用加速计算,从而满足生成式 AI、5G 电信和主权云的需求。NVIDIA 推出了 DOCA 平台框架(DPF),该框架提供了基础构建模块来释放 NVIDIA Blu
    的头像 发表于 01-24 09:29 1272次阅读
    利用<b class='flag-5'>NVIDIA</b> DPF引领DPU<b class='flag-5'>加速</b>云计算的未来

    借助NVIDIA GPU提升鲁班系统CAE软件计算效率

    本案例中鲁班系统高性能 CAE 软件利用 NVIDIA性能 GPU,实现复杂产品的快速仿真,加速产品开发和设计迭代,缩短开发周期,
    的头像 发表于 12-27 16:24 1149次阅读

    《CST Studio Suite 2024 GPU加速计算指南》

    问题,但会降低旧GPU硬件性能,可通过NVIDIA控制面板或命令行工具nvidia - smi管理。 - TCC模式(Windows only):某些
    发表于 12-16 14:25