0
  • 聊天消息
  • 系统消息
  • 评论与回复
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心

完善资料让更多小伙伴认识你,还能领取20积分哦,立即完善>

3天内不再提示

富昌电子SiC设计分享(一):SiC MOSFET驱动电压的分析及探讨

21克888 来源:富昌电子(Future Electroni 作者:David An 2022-05-30 07:00 次阅读
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群


随着制备技术的进步,在需求的不断拉动下,碳化硅(SiC)器件与模块的成本逐年降低。相关产品的研发与应用也得到了极大的加速。尤其在新能源汽车,可再生能源及储能等应用领域的发展,更是不容小觑。
富昌电子(Future Electronics)一直致力于以专业的技术服务,为客户打造个性化的解决方案,并缩短产品设计周期。在第三代半导体的实际应用领域,富昌电子结合自身的技术积累和项目经验,落笔于SiC相关设计的系列文章。希望以此给到大家一定的设计参考,并期待与您进一步的交流。

作为系列文章的第一部分,本文将先就SiC MOSFET的驱动电压做一定的分析及探讨。

1.常见的Vgs与Vgs(th),以及对SiC MOSFET应用的影响

驱动电压Vgs和栅极电压阈值Vgs(th)关系到SiC MOSFET在应用过程中的可靠性,功率损耗(导通电阻),以及驱动电路的兼容性等。这是SiC MOSFET非常关键的参数,在设计过程中需要重点考虑。在不同的设计中,设置不同的驱动电压会有更高的性价比。下图1 列出几个常见厂家部分SiC MOSFET的Vgs与Vgs(th)值作对比。

图1:


2. SiC MOSFET驱动电压设置探讨

(1)驱动电压高电平Vgs_on是选择+12V、+15V、+18V还是+20V?

如图1所示,SiC MOSFET 驱动电压正向最大值在22V~25V左右,推荐的工作电压主要有+20V,+18V两种规格,具体应用需要参考不同SiC MOSFET型号的DATASHEET。由下图2所示,Vgs超过15V时,无论是导通内阻还是导通电流逐渐趋于平缓 (各家SiC MOSFET的DATASHEET给出的参考标准不同,有的是Rds(on)与Vgs的曲线,有的是Id与Vgs的曲线)。当然驱动电压Vgs越高,对应的Rds(on)会越小,损耗也就越小。

富昌设计小建议:Vgs设定Vgs时不能超过DATASHEET给定的最大值,否则可能会造成SiC MOSFET永久损坏。

①对于推荐使用+18V或+20V 高电平驱动电压的SiC MOSFET

由图1所示,因为新一代SiC MOS工艺的提升,部分SiC MOSFET推荐高电平驱动电压为+18V。由下图2所示,工艺的提升,使得Vgs从+18V到+20V的Rds(on)变化不大,导通损耗差别不明显。

富昌设计小建议:最新一代SiC MOSFET建议使用+18V驱动电压。对降低驱动损耗以及减少Vgs过冲损坏更加有益。

②对于+15V 高电平可否驱动SiC MOSFET

在正常情况下,DATASHEET上没有推荐,不建议使用。但是考虑到与15V驱动的Si IGBT 兼容,需要经过计算导通损耗的增加,设计有足够的散热条件以及考虑到设备整体损耗时,也可以使用。如下图2所示为Vgs与Rds(on)的关系,可知门极电压越高,Rds(on)越小,如果在+15V下工作Rds(on)会比标称值大。

富昌设计小建议:Vgs设置为+15V时,SiC MOSFET损耗会比标称值大。

3对于+12V 高电平可否驱动SiC MOSFET

工作原理与+15V驱动电压同理,但是应用会更少,一般不推荐使用。但是一些特殊应用场景,例如在小功率高压辅助电源应用,可能需要兼容目前市面上的Si MOSFET控制IC,又需要使用1700V的SiC MOSFET,客户在综合考量后,如果接受Rds(on)稍高的情况下,是可以使用的。

富昌设计小建议:Vgs设置为+12V时,SIC MOSFET损耗会远远超过标称值,计算损耗时应参考Vgs=+12V时的Rdson。

图2:


(2)驱动电压低电平Vgs_off是选择0V、-3V还是-5V?

驱动电压低电平的选择要比高电平复杂的多,需要考虑到误开通。误开通是由高 速变化的dv/dt,通过米勒电容Cgd耦合到门极产生门极电压变化,导致关断时ΔVgs超过阈值电压而造成的。因此误开通不仅和阈值电压Vgs(th)有关,还与dv/dt产生的电压变化有关。

①对于-3V或-5V关断电压如何选择

首先参考SiC MOSFET的DATASHEET上推荐的关断电压。再考虑门极电压阈值裕度为:ΔVgs_th=Vgs(th)-Vgs_off, 当dv/dt趋于无穷大时,dv/dt产生的门极电压变化为:ΔVgs=Vbus*Crss/Ciss。可知,当门极电压阈值裕度ΔVgs_th越大于dv/dt造成的门极电压变化ΔVgs时,器件Vgs_off安全裕度越大,误开通风险越小。但是Vgs_off越小,引起Vgs(th)漂移越大,导致导通损耗增加。

富昌设计小建议:综合考量计算ΔVgs_th 后,在实验过程中实测ΔVgs,可以进一步提升实际应用的稳定性和性能。

②对于0V关断电压探讨

虽然驱动电压Vgs为OV时已经可以关断SiC MOSFET,但是由于dv/dt引起的ΔVgs,可能会导致SiC MOSFET误导通,导致设备损坏,故而不推荐使用。当然如果是设计的dv/dt非常小,Crss/Ciss比值足够大,并且充分考虑到ΔVgs对SiC MOSFET误导通的影响下,客户可以根据自己的设计而定。

富昌设计小建议:重点考虑dv/dt造成的ΔVgs以及环路等效电感,对误导通的影响,在设置Vgs_off=0V时,才能让系统更加稳定。

3. Vgs(th)漂移带来的影响,以及影响Vgs(th)的因素


由于宽禁带半导体SiC的固有特征,以及不同于Si材料的半导体氧化层界面特性,会引起阈值电压变化以及漂移现象。为了理解这些差异,解释这些差异与材料本身特性的关系,评估其对应用、系统的影响,需要更多的研究及探索。

(1)Vth漂移对应用的影响

长期来看,对于给定的Vgs, 阈值漂移的主要影响在于会增加Rds(on)。通常来说,增加Rds(on)会增加导通损耗,进而增加结温。在计算功率循环时,需要把这个增加的结温也考虑进去。

富昌设计小建议:如果开关损耗占比总损耗较高时,可以忽略Vgs(th) 漂移导致的开通损耗。

(2)Vth漂移对器件的基本功能不会被影响,主要有:

1耐压能力不会受影响;

2器件的可靠性等级,如抗宇宙射线能力,抵抗湿气的能力等不会受影响;

3Vth漂移会对总的损耗有轻微影响;

(3)影响Vth漂移的参数主要包括:

1开关次数,包括开关频率与操作时间;

2驱动电压,主要是Vgs_off;

(4)以下参数对开关操作引起的Vth漂移没有影响:

①结温;

②漏源电压,漏极电流

③dv/dt, di/dt;

4. 总结

本文主要针对驱动电压Vgs和栅极电压阈值Vgs(th)本身对SiC MOSFET在使用过程中的影响做出讨论。在实际应用过程中,设置的Vgs电压是对设备的可靠性,功率损耗以及驱动电路的兼容性等因素的综合考虑。理论计算只是设计参考的一部分,也可以考虑实际测量获得真实的数据来修正设计参数。实际测量得到的ΔVgs,对设置Vgs_off会更有参考价值,并且会使得SiC MOSFET应用设计更加稳定且充分利用其性能。同时驱动电压Vgs的设置还会受到驱动电阻Ron与Roff、驱动电流以及驱动回路等影响,此处不做展开探讨,富昌电子将在后续连载文章中逐步剖析,敬请期待。

如您对碳化硅(SiC)的产品/系统设计存有任何疑问,欢迎您随时与富昌电子的技术团队取得联系。

查看该系列更多文章或联系富昌电子,请点击以下链接或扫描二维码:https://www.futureelectronics.cn/resources/promotions/sic_202205

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。 举报投诉
  • 新能源汽车
    +关注

    关注

    141

    文章

    11270

    浏览量

    104647
  • 碳化硅
    +关注

    关注

    25

    文章

    3319

    浏览量

    51729
  • 驱动电压
    +关注

    关注

    0

    文章

    100

    浏览量

    13912
收藏 人收藏
加入交流群
微信小助手二维码

扫码添加小助手

加入工程师交流群

    评论

    相关推荐
    热点推荐

    倾佳电子碳化硅SiC MOSFET驱动特性与保护机制深度研究报告

    倾佳电子碳化硅SiC MOSFET驱动特性与保护机制深度研究报告 倾佳电子(Changer Tech)是
    的头像 发表于 11-23 11:04 1511次阅读
    倾佳<b class='flag-5'>电子</b>碳化硅<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>驱动</b>特性与保护机制深度研究报告

    深爱半导体 代理 SIC213XBER / SIC214XBER 高性能单相IPM模块

    SIC213XBER / SIC214XBER 全新高性能单相IPM模块系列!我们以全新ESOP-9封装与新代技术,赋能客户在三大核心维度实现飞跃性提升:效率跃升、空间减负、成本优化与可靠性保障
    发表于 07-23 14:36

    SiC碳化硅MOSFET时代的驱动供电解决方案:基本BTP1521P电源芯片

    倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,碳化硅
    的头像 发表于 06-19 16:57 1040次阅读
    <b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>时代的<b class='flag-5'>驱动</b>供电解决方案:基本BTP1521P电源芯片

    国产SiC碳化硅MOSFET在有源滤波器(APF)中的革新应用

    倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,碳化硅
    的头像 发表于 05-10 13:38 750次阅读
    国产<b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>在有源滤波器(APF)中的革新应用

    SiC MOSFET驱动电路设计的关键点

    栅极驱动器是确保SiC MOSFET安全运行的关键,设计栅极驱动电路的关键点包括栅极电阻、栅极电压和布线方式等,本章节带你了解栅极
    的头像 发表于 05-06 15:54 1313次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>驱动</b>电路设计的关键点

    电力电子新未来:珠联璧合,基本半导体SiC模块及SiC驱动双龙出击

    倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅MOSFET单管,SiC碳化硅MOSFET模块,碳化硅
    的头像 发表于 05-03 15:29 574次阅读
    电力<b class='flag-5'>电子</b>新未来:珠联璧合,基本半导体<b class='flag-5'>SiC</b>模块及<b class='flag-5'>SiC</b><b class='flag-5'>驱动</b>双龙出击

    SiC MOSFET驱动电路设计注意事项

    栅极驱动器是保证SiC MOSFET安全运行的关键,设计栅极驱动电路的关键点包括栅极电阻、栅极电压和布线方式等,本章节带你了解
    的头像 发表于 04-24 17:00 1810次阅读
    <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>驱动</b>电路设计注意事项

    SiC MOSFET 开关模块RC缓冲吸收电路的参数优化设计

    ,基于 Si-IGBT 设计的缓冲吸收电路参数并不适用于 SiC-MOSFET 的应用场合。为了使本研究不失般性,本文从基于半桥结构的 SiC-MOSFET 电路出发,推导出关断尖峰电压
    发表于 04-23 11:25

    倾佳电子提供SiC碳化硅MOSFET正负压驱动供电与米勒钳位解决方案

    SiC碳化硅MOSFET正负压驱动供电与米勒钳位解决方案 倾佳电子(Changer Tech)-专业汽车连接器及功率半导体(SiC碳化硅
    的头像 发表于 04-21 09:21 758次阅读
    倾佳<b class='flag-5'>电子</b>提供<b class='flag-5'>SiC</b>碳化硅<b class='flag-5'>MOSFET</b>正负压<b class='flag-5'>驱动</b>供电与米勒钳位解决方案

    SiC二极管和SiC MOSFET的优势

    和高温环境的电子器件中。SiC碳化硅二极管和SiC碳化硅MOSFET(绝缘栅双极晶体管)便是其典型代表。本文将探讨这两种器件的应用优势。
    的头像 发表于 04-17 16:20 914次阅读

    麦科信光隔离探头在碳化硅(SiCMOSFET动态测试中的应用

    评估 搭建了套动态测试平台用于评估SiC MOSFET的开关特性。测试平台采用C3M0075120K 型号的 SiC MOSFET,并配备
    发表于 04-08 16:00

    沟槽型SiC MOSFET的结构和应用

    MOSFET(U-MOSFET)作为新代功率器件,近年来备受关注。本文将详细解析沟槽型SiC MOSFET的结构、特性、制造工艺、应用及
    的头像 发表于 02-02 13:49 1844次阅读

    SiC MOSFET的参数特性

    碳化硅(SiCMOSFET作为宽禁带半导体材料(WBG)的种,具有许多优异的参数特性,这些特性使其在高压、高速、高温等应用中表现出色。本文将详细探讨
    的头像 发表于 02-02 13:48 2405次阅读

    驱动Microchip SiC MOSFET

    电子发烧友网站提供《驱动Microchip SiC MOSFET.pdf》资料免费下载
    发表于 01-21 13:59 2次下载
    <b class='flag-5'>驱动</b>Microchip <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>

    国产SiC MOSFET,正在崛起

    来源:电子工程世界 SiC(碳化硅),已经成为车企的大卖点。而在此前,有车企因是否全域采用SiC MOSFET,发生激烈舆论战。可见,
    的头像 发表于 01-09 09:14 907次阅读
    国产<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>,正在崛起